Quasi-Linearizability is Undecidable

被引:3
|
作者
Wang, Chao [1 ,2 ]
Lv, Yi [1 ]
Liu, Gaoang [1 ,2 ]
Wu, Peng [1 ]
机构
[1] Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
关键词
CHECKING;
D O I
10.1007/978-3-319-26529-2_20
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Quasi-linearizability is a quantitative relaxation of linearizability. It preserves the intuition of the standard notion of linearizability and permits more flexibility. The decidability of quasi-linearizability has been remaining open in general for a bounded number of processes. In this paper we show that the problem of whether a library is quasi-linearizable with respect to a regular sequential specification is undecidable for a bounded number of processes. This is proved by reduction from the k-Z decision problem of a k-counter machine, a known undecidable problem. The key idea of the proof is to establish a correspondence between the quasi-sequential specification of quasi-linearizability and the set of all unadmitted runs of the k-counter machines.
引用
收藏
页码:369 / 386
页数:18
相关论文
共 50 条
  • [31] The Path to Durable Linearizability
    D'Osualdo, Emanuele
    Raad, Azalea
    Vafeiadis, Viktor
    [J]. PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2023, 7 (POPL): : 748 - 774
  • [32] Beyond undecidable
    Cattabriga, P
    [J]. IC-AI'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 1-III, 2000, : 1475 - 1481
  • [33] Rigidity is undecidable
    Bojanczyk, Mikolaj
    Szawiel, Stanislaw
    Zawadowski, Marek
    [J]. MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2014, 24 (06)
  • [34] Undecidable trust
    Geramanis, Olaf
    [J]. GRUPPENPSYCHOTHERAPIE UND GRUPPENDYNAMIK, 2006, 42 (03) : 248 - 265
  • [35] LINEARIZABILITY WITH OWNERSHIP TRANSFER
    Gotsman, Alexey
    Yang, Hongseok
    [J]. LOGICAL METHODS IN COMPUTER SCIENCE, 2013, 9 (03)
  • [36] Verifying Linearizability with Hindsight
    O'Hearn, Peter W.
    Rinetzky, Noam
    Vechev, Martin T.
    Yahav, Eran
    Yorsh, Greta
    [J]. PODC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2010, : 85 - 94
  • [37] Automatically Proving Linearizability
    Vafeiadis, Viktor
    [J]. COMPUTER AIDED VERIFICATION, PROCEEDINGS, 2010, 6174 : 450 - 464
  • [38] Linearizability of chemical reactors
    Guay, M
    [J]. NONLINEAR CONTROL SYSTEMS DESIGN 1998, VOLS 1& 2, 1998, : 489 - 494
  • [39] Linearizability of Saturated Polynomials
    Geyer, Lukas
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2019, 68 (05) : 1551 - 1578
  • [40] COMPUTATION - UNDECIDABLE DYNAMICS
    BENNETT, CH
    [J]. NATURE, 1990, 346 (6285) : 606 - 607