On the residue fields of henselian valued stable fields

被引:0
|
作者
Chipchakov, I. D. [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
来源
关键词
primarily quasilocal field; quasilocal field; norm group; Brauer group; character group of a Galois group; reduced part of an abelian group;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let E be a primarily quasilocal field, M/E a finite Galois extension and D a central division E-algebra of index divisible by [M/E]. In addition to the main result of [5] this part of the paper shows that if the Galois group G(M/E) is not nilpotent, then M does not necessarily embed in D as an E-subalgebra. When E is quasilocal, we find the structure of the character group of its absolute Galois group; this enables us to prove that if E is strictly quasilocal and almost perfect, then the divisible part of the multiplicative group E* equals the intersection of the norm groups of finite Galois extensions of E.
引用
收藏
页码:471 / 478
页数:8
相关论文
共 50 条