Numerical simulation of Verhulst-type kinetics with Poisson white noise

被引:0
|
作者
Tan, Jianguo [1 ]
Wang, Hongli [1 ]
Yang, Minyue [2 ]
机构
[1] Tianjin Univ, Dept Mech Engn, Tianjin 300072, Peoples R China
[2] Tianjin Petr Vocat & Tech Coll, Dept Elect Engn, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Numerical simulation; Verhulst-type system Poisson white noise; Gaussian white noise; NONLINEAR-SYSTEMS; DYNAMIC-SYSTEMS;
D O I
10.1109/ICIEEM.2009.5344315
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new numerical method is developed for finding response samples for a Verhulst-type system subjected to Poisson white noise. The method based on the three following steps: first, zero-one jump law was used to generate the sample paths of Poisson white noise, which worked as the system inputs, then the classical Heun method was used to calculate the system outputs corresponding to the generated input samples, and last we estimated the response statistics from repeating sample outputs by previous steps. The accuracy and efficiency of the proposed method are examined by Verhulst-type systems driven by Poisson white noise.
引用
收藏
页码:1774 / +
页数:2
相关论文
共 50 条
  • [1] Kinetics of a Verhulst-type system with nonlinearly coupled noise
    Zygadlo, R
    PHYSICAL REVIEW E, 1996, 54 (06): : 5964 - 5968
  • [2] VERHULST-TYPE KINETICS DRIVEN BY WHITE SHOT NOISE - EXACT SOLUTION BY DIRECT AVERAGING
    ZYGADLO, R
    PHYSICAL REVIEW E, 1993, 47 (01): : 106 - 117
  • [3] Steady-state probability characteristics of Verhulst and Hongler models with multiplicative white Poisson noise
    Alexander A. Dubkov
    Anna A. Kharcheva
    The European Physical Journal B, 2019, 92
  • [4] Steady-state probability characteristics of Verhulst and Hongler models with multiplicative white Poisson noise
    Dubkov, Alexander A.
    Kharcheva, Anna A.
    EUROPEAN PHYSICAL JOURNAL B, 2019, 92 (10):
  • [5] Verhulst model with Levy white noise excitation
    Dubkov, A. A.
    Spagnolo, B.
    EUROPEAN PHYSICAL JOURNAL B, 2008, 65 (03): : 361 - 367
  • [6] Numerical solution of stochastic differential equations with Poisson and Leacutevy white noise
    Grigoriu, M.
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [7] Verhulst model with Lévy white noise excitation
    A. A. Dubkov
    B. Spagnolo
    The European Physical Journal B, 2008, 65 : 361 - 367
  • [8] WHITE NOISE AND POISSON DISTRIBUTIONS
    BLANCLAPIERRE, A
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (11): : 718 - +
  • [9] Dynamic Systems with Poisson White Noise
    Mircea Grigoriu
    Nonlinear Dynamics, 2004, 36 : 255 - 266
  • [10] White Noise of Poisson Random Measures
    Bernt Øksendal
    Frank Proske
    Potential Analysis, 2004, 21 : 375 - 403