On cleanness of von Neumann algebras

被引:0
|
作者
Cui, Lu [1 ,4 ]
Huang, Linzhe [2 ]
Wu, Wenming [3 ]
Yuan, Wei [1 ,4 ]
Zhang, Hanbin [5 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[3] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[5] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
关键词
Von Neumann algebras; Clean rings; Idempotents; Projections; C-ASTERISK-ALGEBRAS; EXCHANGE RINGS; PROJECTIVE-MODULES; FREDHOLM THEORIES; CANCELLATION;
D O I
10.1016/j.jmaa.2021.125969
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A unital ring is called clean (resp. strongly clean) if every element can be written as the sum of an invertible element and an idempotent (resp. an invertible element and an idempotent that commutes). T.Y. Lam proposed a question: which von Neumann algebras are clean as rings? In this paper, we characterize strongly clean von Neumann algebras and prove that all finite von Neumann algebras and all separable infinite factors are clean. (C)& nbsp;2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Commutator estimates in von Neumann algebras
    Ber, A. F.
    Sukochev, F. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2013, 47 (01) : 62 - 63
  • [32] APPROXIMATE EQUIVALENCE IN VON NEUMANN ALGEBRAS
    Li, Qihui
    Hadwin, Don
    Liu, Wenjing
    OPERATORS AND MATRICES, 2023, 17 (01): : 1 - 23
  • [33] Hypercontractivity in group von Neumann algebras
    JUNGE, M. A. R. I. U. S.
    PALAZUELOS, C. A. R. L. O. S.
    PARCET, J. A. V. I. E. R.
    PERRIN, M. A. T. H. I. L. D. E.
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 249 (1183) : VII - +
  • [34] STEERING PROJECTIONS IN VON NEUMANN ALGEBRAS
    Wegert, Adam
    OPUSCULA MATHEMATICA, 2015, 35 (02) : 251 - 271
  • [35] Diagram Groupoids and von Neumann Algebras
    Ilwoo Cho
    Complex Analysis and Operator Theory, 2012, 6 : 843 - 895
  • [36] GLOBAL STRUCTURE IN VON NEUMANN ALGEBRAS
    EFFROS, EG
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 121 (02) : 434 - &
  • [37] Infinite Measures on von Neumann Algebras
    Stanisław Goldstein
    Adam Paszkiewicz
    International Journal of Theoretical Physics, 2015, 54 : 4341 - 4348
  • [38] Approximate equivalence in von Neumann algebras
    Huiru Ding
    Don Hadwin
    Science in China Series A: Mathematics, 2005, 48 : 239 - 247
  • [39] Homology of group von Neumann algebras
    Mattox, Wade
    MUENSTER JOURNAL OF MATHEMATICS, 2016, 9 (01): : 77 - 91
  • [40] Representations of von Neumann Algebras and Ultraproducts
    Haliullin, Samigulla
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (04) : 1010 - 1016