On-chip coherent detection with quantum limited sensitivity

被引:11
|
作者
Kovalyuk, Vadim [1 ,2 ]
Ferrari, Simone [2 ,3 ]
Kahl, Oliver [2 ,3 ]
Semenov, Alexander [1 ,4 ]
Shcherbatenko, Michael [1 ,4 ]
Lobanov, Yury [1 ,4 ]
Ozhegov, Roman [1 ]
Korneev, Alexander [1 ,4 ]
Kaurova, Nataliya [1 ]
Voronov, Boris [1 ]
Pernice, Wolfram [3 ]
Gol'tsman, Gregory [1 ,5 ]
机构
[1] Moscow State Pedag Univ, Dept Phys, Moscow 119992, Russia
[2] Karlsruhe Inst Technol, Inst Nanotechnol, D-76132 Karlsruhe, Germany
[3] Univ Munster, Inst Phys, D-48149 Munster, Germany
[4] Moscow Inst Phys & Technol, Moscow 141700, Russia
[5] Natl Res Univ, Higher Sch Econ, Moscow 101000, Russia
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
俄罗斯科学基金会;
关键词
SINGLE-PHOTON DETECTORS; HETERODYNE-DETECTION; INTEGRATION; COMPACT;
D O I
10.1038/s41598-017-05142-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
While single photon detectors provide superior intensity sensitivity, spectral resolution is usually lost after the detection event. Yet for applications in low signal infrared spectroscopy recovering information about the photon's frequency contributions is essential. Here we use highly efficient waveguide integrated superconducting single-photon detectors for on-chip coherent detection. In a single nanophotonic device, we demonstrate both single-photon counting with up to 86% on-chip detection efficiency, as well as heterodyne coherent detection with spectral resolution f/Delta f exceeding 10(11). By mixing a local oscillator with the single photon signal field, we observe frequency modulation at the intermediate frequency with ultra-low local oscillator power in the femto-Watt range. By optimizing the nanowire geometry and the working parameters of the detection scheme, we reach quantum-limited sensitivity. Our approach enables to realize matrix integrated heterodyne nanophotonic devices in the C-band wavelength range, for classical and quantum optics applications where single-photon counting as well as high spectral resolution are required simultaneously.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On-Chip Quantum Optics with Quantum Dot Microcavities
    Stock, E.
    Albert, F.
    Hopfmann, C.
    Lermer, M.
    Schneider, C.
    Hoefling, S.
    Forchel, A.
    Kamp, M.
    Reitzenstein, S.
    ADVANCED MATERIALS, 2013, 25 (05) : 707 - 710
  • [22] An on-chip quantum buffer: A key component for a photonic quantum computer on a chip
    1600, Institute of Electronics Information Communication Engineers (97):
  • [23] Compute-in-RRAM with Limited On-chip Resources
    Lu, Anni
    Peng, Xiaochen
    Yu, Shimeng
    2021 IEEE 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS), 2021,
  • [24] Sensitivity of interconnect delay to on-chip inductance
    Ismail, YI
    Freidman, EG
    ISCAS 2000: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - PROCEEDINGS, VOL III: EMERGING TECHNOLOGIES FOR THE 21ST CENTURY, 2000, : 403 - 406
  • [25] Thermal sensitivity analysis of on-chip interconnects
    Fu, Guang-Cao
    Tang, Min
    Lu, Jia-Qing
    Mao, Jun-Fa
    ELECTRONICS LETTERS, 2014, 50 (11) : 797 - 798
  • [26] A bio-barcode assay for on-chip attomolar-sensitivity protein detection
    Goluch, Edgar D.
    Nam, Jwa-Min
    Georganopoulou, Dimitra G.
    Chiesl, Thomas N.
    Shaikh, Kashan A.
    Ryu, Kee S.
    Barron, Annelise E.
    Mirkin, Chad A.
    Liu, Chang
    LAB ON A CHIP, 2006, 6 (10) : 1293 - 1299
  • [27] On-chip Earth spin detection
    Thibaut Sylvestre
    Nature Photonics, 2020, 14 : 341 - 343
  • [28] On-Chip Detection of Cellular Activity
    Almog, R.
    Daniel, R.
    Vernick, S.
    Ron, A.
    Ben-Yoav, H.
    Shacham-Diamand, Y.
    WHOLE CELL SENSING SYSTEMS I: REPORTER CELLS AND DEVICES, 2010, 117 : 179 - 191
  • [29] On-Chip Single Plasmon Detection
    Heeres, Reinier W.
    Dorenbos, Sander N.
    Koene, Benny
    Solomon, Glenn S.
    Kouwenhoven, Leo P.
    Zwiller, Valery
    NANO LETTERS, 2010, 10 (02) : 661 - 664
  • [30] On-chip Earth spin detection
    Sylvestre, Thibaut
    NATURE PHOTONICS, 2020, 14 (06) : 341 - 343