Errors of inference in structural equation modeling

被引:52
|
作者
McCoach, D. Betsy [1 ]
Black, Anne C. [1 ]
O'Connell, Ann A. [1 ]
机构
[1] Univ Connecticut, Neag Sch Educ, Storrs, CT 06269 USA
关键词
D O I
10.1002/pits.20238
中图分类号
G44 [教育心理学];
学科分类号
0402 ; 040202 ;
摘要
Although structural equation modeling (SEM) is one of the most comprehensive and flexible approaches to data analysis currently available, it is nonetheless prone to researcher misuse and misconceptions. This article offers a brief overview of the unique capabilities of SEM and discusses common sources of user error in drawing conclusions from these analyses. We make recommendations to guide proper analytical practices and appropriate inferences and provide references for more advanced study. (c) 2007 Wiley Periodicals, Inc.
引用
下载
收藏
页码:461 / 470
页数:10
相关论文
共 50 条
  • [41] Handbook of Structural Equation Modeling
    Howard, Andrea L.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2013, 20 (02) : 354 - 360
  • [42] Structural equation modeling in epidemiology
    Alves Ferreira Amorim, Leila Denise
    Fiaccone, Rosemeire L.
    Santos, Carlos Antonio S. T.
    dos Santos, Tereza Nadya
    de Moraes, Lia Terezinha L. P.
    Oliveira, Nelson F.
    Barbosa, Silvano O.
    dos Santos, Darci Neves
    dos Santos, Leticia Marques
    Matos, Sheila M. A.
    Barreto, Mauricio L.
    CADERNOS DE SAUDE PUBLICA, 2010, 26 (12): : 2250 - 2261
  • [43] STRUCTURAL EQUATION MODELING - REPLY
    RANDHAWA, BS
    BEAMER, JE
    JOURNAL OF EDUCATIONAL PSYCHOLOGY, 1994, 86 (03) : 463 - 466
  • [44] An Introduction to Structural Equation Modeling
    Hasman, Arie
    ENABLING HEALTH INFORMATICS APPLICATIONS, 2015, 213 : 3 - 6
  • [45] Handbook of Structural Equation Modeling
    Khojasteh, Jam
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2023, 30 (06) : 1022 - 1024
  • [46] STRUCTURAL EQUATION MODELING WITH THE SMARTPLS
    Ringle, Cristhian M.
    da Silva, Dirceu
    Bido, Diogenes
    REVISTA BRASILEIRA DE MARKETING, 2014, 13 (02): : 54 - 71
  • [47] Gaussian Process Modeling of Approximate Inference Errors for Variational Autoencoders
    Kim, Minyoung
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 244 - 253
  • [48] A Systematic Evaluation and Comparison Between Exploratory Structural Equation Modeling and Bayesian Structural Equation Modeling
    Guo, Jiesi
    Marsh, Herbert W.
    Parker, Philip D.
    Dicke, Theresa
    Luedtke, Oliver
    Diallo, Thierno M. O.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2019, 26 (04) : 529 - 556
  • [49] Nonlinear Structural Equation Models for Network Topology Inference
    Shen, Yanning
    Baingana, Brian
    Giannakis, Georgios B.
    2016 ANNUAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (CISS), 2016,
  • [50] Stability of Linear Structural Equation Models of Causal Inference
    Sankararaman, Karthik Abinav
    Louis, Anand
    Goyal, Navin
    35TH UNCERTAINTY IN ARTIFICIAL INTELLIGENCE CONFERENCE (UAI 2019), 2020, 115 : 323 - 333