Thermal conductivity suppression in GaAs-AlAs core-shell nanowire arrays

被引:12
|
作者
Juntunen, Taneli [1 ]
Koskinen, Tomi [1 ]
Khayrudinov, Vladislav [1 ]
Haggren, Tuomas [2 ]
Jiang, Hua [3 ]
Lipsanen, Harri [1 ]
Tittonen, Ilkka [1 ]
机构
[1] Aalto Univ, Dept Elect & Nanoengn, POB 13500, FI-00076 Aalto, Finland
[2] Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys & Engn, Canberra, ACT 2601, Australia
[3] Aalto Univ, Dept Appl Phys, POB 15100, FI-00076 Aalto, Finland
基金
芬兰科学院; 欧盟地平线“2020”;
关键词
THERMOELECTRIC FIGURE; GE;
D O I
10.1039/c9nr06831g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Semiconductor nanowire heterostructures have been shown to provide appealing properties for optoelectronics and solid-state energy harvesting by thermoelectrics. Among these nanoarchitectures, coaxial core-shell nanowires have been of primary interest due to their electrical functionality, as well as intriguing phonon localization effects in the surface-dominated regime predicted via atomic simulations. However, experimental studies on the thermophysical properties of III-V semiconductor core-shell nanowires remain scarce regardless of the ubiquitous nature of these compounds in solid-state applications. Here, we present thermal conductivity measurements of the arrays of GaAs nanowires coated with AlAs shells. We unveil a strong suppression in thermal transport facilitated by the AlAs shells, up to similar to 60%, producing a non-monotonous dependence of thermal conductivity on the shell thickness. Such translation of the novel heat transport phenomena to macroscopic nanowire arrays paves the way for rational thermal design in nanoscale applications.
引用
收藏
页码:20507 / 20513
页数:7
相关论文
共 50 条
  • [11] Core-shell heterojunction solar cells on silicon nanowire arrays
    Jia, Guobin
    Steglich, Martin
    Sill, Ingo
    Falk, Fritz
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 96 (01) : 226 - 230
  • [12] Single GaAs/GaAsP Coaxial Core-Shell Nanowire Lasers
    Hua, Bin
    Motohisa, Junichi
    Kobayashi, Yasunori
    Hara, Shinjiroh
    Fukui, Takashi
    NANO LETTERS, 2009, 9 (01) : 112 - 116
  • [13] Thermal conductivity reduction in core-shell nanowires
    Hu, Ming
    Zhang, Xiaoliang
    Giapis, Konstantinos P.
    Poulikakos, Dimos
    PHYSICAL REVIEW B, 2011, 84 (08):
  • [14] Resonant LO phonon enhanced conductivity in GaAs-AlAs superlattices
    Dalton, KSH
    Hales, VJ
    Symons, DM
    Nicholas, RJ
    Gassot, P
    Maude, DK
    Portal, JC
    PROCEEDINGS OF THE 25TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, PTS I AND II, 2001, 87 : 907 - 908
  • [15] Thermal Conductivity of GaAs Nanowire Arrays Measured by the 3ω Method
    Ghukasyan, Ara
    Oliveira, Pedro
    Goktas, Nebile Isik
    LaPierre, Ray
    NANOMATERIALS, 2022, 12 (08)
  • [16] LONGITUDINAL THERMAL CONDUCTIVITY OF Cu-SWCNT CORE-SHELL NANOWIRE: MOLECULAR DYNAMICS SIMULATIONS
    Toprak, Kasim
    Bayazitoglu, Yildiz
    HEAT TRANSFER RESEARCH, 2022, 54 (04) : 77 - 89
  • [17] LONGITUDINAL THERMAL CONDUCTIVITY OF Cu-SWCNT CORE-SHELL NANOWIRE: MOLECULAR DYNAMICS SIMULATIONS
    Toprak, Kasim
    Bayazitoglu, Yildiz
    HEAT TRANSFER RESEARCH, 2023, 54 (04) : 77 - 89
  • [18] Si/ZnO core-shell nanowire arrays for photoelectrochemical water splitting
    Shi, Minmin
    Pan, Xiaowei
    Qiu, Weiming
    Zheng, Dingxiang
    Xu, Mingsheng
    Chen, Hongzheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (23) : 15153 - 15159
  • [19] GaAs-GaP Core-Shell Nanowire Transistors: A Computational Study
    He, Yuhui
    Zhao, Yuning
    Fan, Chun
    Liu, Xiaoyan
    Kang, Jinfeng
    Han, Ruqi
    2008 9TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED-CIRCUIT TECHNOLOGY, VOLS 1-4, 2008, : 385 - +
  • [20] Optimization of the Shell Thickness of the ZnO/CdS Core-Shell Nanowire Arrays in a CZTS Absorber
    Wang, Chonge
    Drame, Boubacar
    Niare, Lucien
    Yuegang, Fu
    INTERNATIONAL JOURNAL OF OPTICS, 2022, 2022