Arc Length-Based WENO Scheme for Hamilton-Jacobi Equations

被引:2
|
作者
Samala, Rathan [1 ]
Biswas, Biswarup [2 ]
机构
[1] Indian Inst Petr & Energy Visakhapatnam, Dept Humanities & Sci, Fac Math, Visakhapatnam 530003, Andhra Pradesh, India
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
Finite difference; Hamilton-Jacobi equations; WENO scheme; Length of the curve; Smoothness indicators; Nonlinear weights; FINITE-ELEMENT-METHOD; SEMIDISCRETE CENTRAL SCHEMES; VISCOSITY SOLUTIONS; TIME DISCRETIZATIONS; ENO SCHEMES;
D O I
10.1007/s42967-020-00091-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, novel smoothness indicators are presented for calculating the nonlinear weights of the weighted essentially non-oscillatory scheme to approximate the viscosity numerical solutions of Hamilton-Jacobi equations. These novel smoothness indicators are constructed from the derivatives of reconstructed polynomials over each sub-stencil. The constructed smoothness indicators measure the arc-length of the reconstructed polynomials so that the new nonlinear weights could get less absolute truncation error and give a high-resolution numerical solution. Extensive numerical tests are conducted and presented to show the performance capability and the numerical accuracy of the proposed scheme with the comparison to the classical WENO scheme.
引用
收藏
页码:481 / 496
页数:16
相关论文
共 50 条
  • [41] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [42] Systems of Hamilton-Jacobi equations
    Julio Cambronero
    Javier Pérez Álvarez
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 650 - 658
  • [43] Relaxation of Hamilton-Jacobi Equations
    Hitoshi Ishii
    Paola Loreti
    Archive for Rational Mechanics and Analysis, 2003, 169 : 265 - 304
  • [44] On vectorial Hamilton-Jacobi equations
    Imbert, C
    Volle, M
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 493 - 506
  • [45] A convergent scheme for Hamilton-Jacobi equations on a junction: application to traffic
    Costeseque, Guillaume
    Lebacque, Jean-Patrick
    Monneau, Regis
    NUMERISCHE MATHEMATIK, 2015, 129 (03) : 405 - 447
  • [46] WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (02) : 591 - 605
  • [47] STOCHASTIC HOMOGENIZATION OF HAMILTON-JACOBI AND "VISCOUS"-HAMILTON-JACOBI EQUATIONS WITH CONVEX NONLINEARITIES - REVISITED
    Lions, Pierre-Louis
    Souganidis, Panagiotis E.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (02) : 627 - 637
  • [48] Minimax solutions to the Hamilton-Jacobi equations
    Subbotin A.I.
    Journal of Mathematical Sciences, 2001, 103 (6) : 772 - 777
  • [49] Hamilton-Jacobi Equations on Graph and Applications
    Yan Shu
    Potential Analysis, 2018, 48 : 125 - 157
  • [50] Hamilton-Jacobi equations in evolutionary games
    Krasovskiy, N. A.
    Kryazhimskiy, A. V.
    Tarasyev, A. M.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2014, 20 (03): : 114 - 131