Majorization for (0,1)-matrices

被引:5
|
作者
Dahl, Geir [1 ]
Guterman, Alexander [2 ,3 ,4 ]
Shteyner, Pavel [2 ,3 ,4 ]
机构
[1] Univ Oslo, Dept Math, Oslo, Norway
[2] Lomonosov Moscow State Univ, Dept Math & Mech, Moscow, Russia
[3] Moscow Ctr Continuous Math Educ, Moscow 119002, Russia
[4] Moscow Inst Phys & Technol, Dolgoprudnyi 141701, Russia
基金
俄罗斯科学基金会;
关键词
Matrix majorization; Partial order; (0,1)-matrices;
D O I
10.1016/j.laa.2019.09.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the important notion of majorization. We study majorization for matrices, and focus on (0, 1)-matrices. We prove several results concerning such matrix majorization orders on the set of (0,1)-matrices, including characterizations for certain orders, and separate sufficient and necessary conditions for the so-called matrix majorization order. Some of these results are of combinatorial nature. (C) 2019 The Author(s). Published by Elsevier Inc.
引用
收藏
页码:147 / 163
页数:17
相关论文
共 50 条
  • [31] Convex (0,1)-matrices and their epitopes
    Brualdi, Richard A.
    Dahl, Geir
    DISCRETE APPLIED MATHEMATICS, 2021, 297 : 21 - 34
  • [32] Totally nonnegative (0,1)-matrices
    Brualdi, Richard A.
    Kirkland, Steve
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (07) : 1650 - 1662
  • [33] Permanents of Hessenberg (0,1)-matrices
    Olesky, DD
    Shader, B
    van den Driessche, P
    ELECTRONIC JOURNAL OF COMBINATORICS, 2005, 12 (01):
  • [34] Double orderings of (0,1)-matrices
    Mader, A
    Mutzbauer, O
    ARS COMBINATORIA, 2001, 61 : 81 - 95
  • [35] CHARACTERIZATION OF CONVERTIBLE (0,1)-MATRICES
    LITTLE, CHC
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (03) : 187 - 208
  • [36] ON THE ENUMERATION OF RECTANGULAR (0,1)-MATRICES
    HENDRICKSON, JA
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1995, 51 (2-4) : 291 - 313
  • [37] PROPERTIES OF (0,1)-MATRICES WITH NO TRIANGLES
    ANSTEE, RP
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 29 (02) : 186 - 198
  • [38] Optimal (0,1)-matrix completion with majorization ordered objectives
    Mo, Yanfang
    Chen, Wei
    You, Keyou
    Qiu, Li
    AUTOMATICA, 2024, 160
  • [39] Minimal matrices in the Bruhat order for symmetric (0,1)-matrices
    da Cruz, Henrique F.
    Fernandes, Rosario
    Furtado, Susana
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 530 : 160 - 184
  • [40] UNIVERSAL TILINGS AND UNIVERSAL (0,1)-MATRICES
    CLAPHAM, CRJ
    DISCRETE MATHEMATICS, 1986, 58 (01) : 87 - 92