Interpretation of Lagrange multipliers in nonlinear pricing problem

被引:6
|
作者
Berg, Kimmo [1 ]
Ehtamo, Harri [1 ]
机构
[1] Helsinki Univ Technol, Syst Anal Lab, Helsinki 02015, Finland
关键词
Lagrange multipliers; Nonlinear pricing; Flow network; Conservation law; Stability; Sensitivity;
D O I
10.1007/s11590-009-0166-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present well-known interpretations of Lagrange multipliers in physical and economic applications, and introduce a new interpretation in nonlinear pricing problem. The multipliers can be interpreted as a network of directed flows between the buyer types. The structure of the digraph and the fact that the multipliers usually have distinctive values can be used in solving the optimization problem more efficiently. We also find that the multipliers satisfy a conservation law for each node in the digraph, and the non-uniqueness of the multipliers are connected to the stability of the solution structure.
引用
收藏
页码:275 / 285
页数:11
相关论文
共 50 条
  • [1] Interpretation of Lagrange multipliers in nonlinear pricing problem
    Kimmo Berg
    Harri Ehtamo
    Optimization Letters, 2010, 4 : 275 - 285
  • [3] Spot Pricing When Lagrange Multipliers Are Not Unique
    Feng, Donghan
    Xu, Zhao
    Zhong, Jin
    Ostergaard, Jacob
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2012, 27 (01) : 314 - 322
  • [5] Lagrange multipliers in elastic-plastic torsion problem for nonlinear monotone operators
    Giuffre, S.
    Maugeri, A.
    Puglisi, D.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (03) : 817 - 837
  • [6] On the numerical analysis of a nonlinear elliptic problem via mixed-FEM and Lagrange multipliers
    Barrios, TP
    Gatica, GN
    Gatica, LF
    APPLIED NUMERICAL MATHEMATICS, 2004, 48 (02) : 135 - 155
  • [7] Criticality of Lagrange multipliers in extended nonlinear optimization
    Do, Hong
    Mordukhovich, Boris S.
    Sarabi, M. Ebrahim
    OPTIMIZATION, 2021, 70 (03) : 511 - 544
  • [8] Interpretation of Lagrange multipliers of generalized maximum-entropy distributions
    Frank, TD
    PHYSICS LETTERS A, 2002, 299 (2-3) : 153 - 158
  • [9] Lagrange multipliers and nonlinear variational inequalities with gradient constraints
    Giuffre, Sofia
    Marciano, Attilio
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 380 (2236):
  • [10] The theory of discrete Lagrange multipliers for nonlinear discrete optimization
    Wah, BW
    Wu, Z
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING-CP'99, 1999, 1713 : 28 - 42