Fabrication of GaN(1-x)Asx, Zinc-Blende, or Wurtzite GaN Depending on GaAs Nitridation Temperature in a CVD System

被引:2
|
作者
Sebastian Ramirez-Gonzalez, Francisco [1 ]
Garcia-Salgado, Godofredo [1 ]
Morales, Crisaforo [1 ]
Diaz, Tomas [1 ]
Rosendo, Enrique [1 ]
Gabriela Nieto-Caballero, Fabiola [2 ]
Alberto Luna, Jose [1 ]
Coyopol, Antonio [1 ]
Romano, Roman [1 ]
Galeazzi, Reina [1 ]
机构
[1] Benemerita Univ Autonoma Puebla, Ctr Invest Disposit Semicond, 14 Sur & Av San Claudio, Puebla 72570, Mexico
[2] Benemerita Univ Autonoma Puebla, Fac Ciencias Quim, 14 Sur & Av San Claudio, Puebla 72570, Mexico
关键词
CVD; GaN(1-x)Asx; GaN wurtzite structure; GaN zinc-blende structure; nitridation; GAAS(100); PHOTOLUMINESCENCE; SAPPHIRE; FILMS; AIN;
D O I
10.1002/crat.201800042
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The study of GaN morphology and structure modification due to the variation of the nitridation temperature are reported. GaN is obtained by nitridation of GaAs (111) using the flow of a mixture of hydrogen and ammonia into a horizontal CVD system. The experiments are carried out at atmospheric pressures of 800, 900, and 1000 degrees C for 1h. XRD results together with the pole figure indicate that GaN(1-x)Asx is obtained at 800 degrees C, that zinc-blende GaN structure is obtained at 900 degrees C, and that wurtzite GaN structure is obtained at 900 degrees C. The photoluminescence emission peak (obtained at room temperature) shifts to 420, 384, and 372nm with the nitridation temperature change, in agreement with the XRD and pole figure results. SEM images show the morphology change, where GaN(1-x)Asx and GaN layers are obtained at 800 and 900 degrees C, respectively, while GaN columns are obtained at 1000 degrees C. The morphology and structure change due the nitridation temperature variation are also discussed based on the results.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Hexagonal (wurtzite) GaN inclusions as a defect in cubic (zinc-blende) GaN
    Zainal, N.
    Novikov, S. V.
    Akimov, A. V.
    Staddon, C. R.
    Foxon, C. T.
    Kent, A. J.
    PHYSICA B-CONDENSED MATTER, 2012, 407 (15) : 2964 - 2966
  • [2] Hexagonal GaN microdisk with wurtzite/zinc-blende GaN crystal phase nano-heterostructures and high quality zinc-blende GaN crystal layer
    Kouno, Tetsuya
    Sakai, Masaru
    Kishino, Katsumi
    Hara, Kazuhiko
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2014, 53 (06)
  • [3] Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN
    Wright, AF
    JOURNAL OF APPLIED PHYSICS, 1997, 82 (06) : 2833 - 2839
  • [4] Optical properties of wurtzite/zinc-blende heterostructures in GaN nanowires
    Jacopin, G.
    Rigutti, L.
    Largeau, L.
    Fortuna, F.
    Furtmayr, F.
    Julien, F. H.
    Eickhoff, M.
    Tchernycheva, M.
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (06)
  • [5] Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN
    Wright, A.F.
    Journal of Engineering and Applied Science, 1998, 82 (06):
  • [6] Structure and photoluminescence of wurtzite/zinc-blende heterostructure GaN nanorods
    Xu, H. Y.
    Liu, Z.
    Liang, Y.
    Rao, Y. Y.
    Zhang, X. T.
    Hark, S. K.
    APPLIED PHYSICS LETTERS, 2009, 95 (13)
  • [7] Charge Separation in Wurtzite/Zinc-Blende Heterojunction GaN Nanowires
    Wang, Zhiguo
    Li, Jingbo
    Gao, Fei
    Weber, William J.
    CHEMPHYSCHEM, 2010, 11 (15) : 3329 - 3332
  • [8] Effective electronic masses in wurtzite and zinc-blende GaN and AlN
    Persson, C
    da Silva, AF
    Ahuja, R
    Johansson, B
    JOURNAL OF CRYSTAL GROWTH, 2001, 231 (03) : 397 - 406
  • [9] The electronic properties of zinc-blende GaN, wurtzite GaN and pnma-GaN crystals under pressure
    Luan Xing-He
    Feng Chuang
    Qin Hong-Bo
    Niu Fan-Fan
    Yang Dao-Guo
    2017 18TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY (ICEPT), 2017, : 1483 - 1487
  • [10] Optical properties of wurtzite and zinc-blende GaN/AlN quantum dots
    Fonoberov, VA
    Balandin, AA
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (04): : 2190 - 2194