Contrastive Self-supervised Representation Learning Using Synthetic Data

被引:3
|
作者
She, Dong-Yu [1 ]
Xu, Kun [1 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-supervised learning; contrastive learning; synthetic image; convolutional neural network; representation learning;
D O I
10.1007/s11633-021-1297-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Learning discriminative representations with deep neural networks often relies on massive labeled data, which is expensive and difficult to obtain in many real scenarios. As an alternative, self-supervised learning that leverages input itself as supervision is strongly preferred for its soaring performance on visual representation learning. This paper introduces a contrastive self-supervised framework for learning generalizable representations on the synthetic data that can be obtained easily with complete controllability. Specifically, we propose to optimize a contrastive learning task and a physical property prediction task simultaneously. Given the synthetic scene, the first task aims to maximize agreement between a pair of synthetic images generated by our proposed view sampling module, while the second task aims to predict three physical property maps, i.e., depth, instance contour maps, and surface normal maps. In addition, a feature-level domain adaptation technique with adversarial training is applied to reduce the domain difference between the realistic and the synthetic data. Experiments demonstrate that our proposed method achieves state-of-the-art performance on several visual recognition datasets.
引用
收藏
页码:556 / 567
页数:12
相关论文
共 50 条
  • [21] Multiple representation contrastive self-supervised learning for pulmonary nodule detection
    Torki, Asghar
    Adibi, Peyman
    Kashani, Hamidreza Baradaran
    KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [22] Self-supervised contrastive representation learning for large-scale trajectories
    Li, Shuzhe
    Chen, Wei
    Yan, Bingqi
    Li, Zhen
    Zhu, Shunzhi
    Yu, Yanwei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 148 : 357 - 366
  • [23] RegionCL: Exploring Contrastive Region Pairs for Self-supervised Representation Learning
    Xu, Yufei
    Zhang, Qiming
    Zhang, Jing
    Tao, Dacheng
    COMPUTER VISION - ECCV 2022, PT XXXIII, 2022, 13693 : 477 - 494
  • [24] Pose-disentangled Contrastive Learning for Self-supervised Facial Representation
    Liu, Yuanyuan
    Wang, Wenbin
    Zhan, Yibing
    Feng, Shaoze
    Liu, Kejun
    Chen, Zhe
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9717 - 9728
  • [25] Self-Supervised Facial Motion Representation Learning via Contrastive Subclips
    Sun, Zheng
    Torrie, Shad A.
    Sumsion, Andrew W.
    Lee, Dah-Jye
    ELECTRONICS, 2023, 12 (06)
  • [26] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [27] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    TECHNOLOGIES, 2021, 9 (01)
  • [28] Self-Supervised Video Representation Learning with Meta-Contrastive Network
    Lin, Yuanze
    Guo, Xun
    Lu, Yan
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8219 - 8229
  • [29] Self-supervised clustering of mass spectrometry imaging data using contrastive learning
    Hu, Hang
    Bindu, Jyothsna Padmakumar
    Laskin, Julia
    CHEMICAL SCIENCE, 2021, 13 (01) : 90 - 98
  • [30] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876