Sensorized Robotic Skin Based on Piezoresistive Sensor Fiber Composites Produced with Injection Molding of Liquid Silicone

被引:22
|
作者
Georgopoulou, Antonia [1 ,2 ,3 ]
Michel, Silvain [4 ]
Clemens, Frank [1 ]
机构
[1] Empa Swiss Fed Labs Mat Sci & Technol, Dept Funct Mat, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[2] Vrije Univ Brussel VUB, Dept Mech Engn MECH, Pl Laan 2, B-1050 Brussels, Belgium
[3] Flanders Make, Pl Laan 2, B-1050 Brussels, Belgium
[4] Empa Swiss Fed Labs Mat Sci & Technol, Dept Engn Sci, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
关键词
injection molding; fiber composites; electronic skin; stretchable electronics; MATRIX COMPOSITES; POLYMER; DESIGN; ELECTRONICS; FABRICATION; PARAMETERS; STRESS; RUBBER;
D O I
10.3390/polym13081226
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Soft robotics and flexible electronics are rising in popularity and can be used in many applications. However, there is still a need for processing routes that allow the upscaling in production for functional soft robotic parts in an industrial scale. In this study, injection molding of liquid silicone is suggested as a fabrication method for sensorized robotic skin based on sensor fiber composites. Sensor fibers based on thermoplastic elastomers with two different shore hardness (50A and 70A) are combined with different silicone materials. A mathematical model is used to predict the mechanical load transfer from the silicone matrix to the fiber and shows that the matrix of the lowest shore hardness should not be combined with the stiffer fiber. The sensor fiber composites are fixed on a 3D printed robotic finger. The sensorized robotic skin based on the composite with the 50A fiber in combination with pre-straining gives good sensor performance as well as a large elasticity. It is proposed that a miss-match in the mechanical properties between fiber sensor and matrix should be avoided in order to achieve low drift and relaxation. These findings can be used as guidelines for material selection for future sensor integrated soft robotic systems.
引用
收藏
页数:16
相关论文
共 21 条
  • [21] A highly sensitive fenobucarb electrochemical sensor based on graphene nanoribbons-ionic liquid-cobalt phthalocyanine composites modified on screen-printed carbon electrode coupled with a flow injection analysis
    Kunpatee, Kanjana
    Charnsai, Phuktra
    Mehmeti, Eda
    Stankovic, Dalibor M.
    Ortner, Astrid
    Kalcher, Kurt
    Samphao, Anchalee
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 855