THIN CLOUD REMOVAL FOR LANDSAT 8 OLI DATA USING INDEPENDENT COMPONENT ANALYSIS

被引:0
|
作者
Shen, Yang [1 ,2 ,3 ]
Wang, Yong [1 ,2 ,3 ]
Lv, Haitao [1 ,3 ]
机构
[1] Univ Elect & Sci Technol China, 2006 Xiyuan Ave, Chengdu 611731, Sichuan, Peoples R China
[2] E Carolina Univ, Dept Geog Planning & Environm, Greenville, NC 27858 USA
[3] UESTC, Big Data Res Ctr, Inst Remote Sensing Big Data, Chengdu 611731, Sichuan, Peoples R China
关键词
Independent component analysis (ICA); Landsat; 8; Operational land imager (OLI) data; Quality assessment (QA) band; Thin clouds and their removal; ALGORITHMS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Using independent component analysis (ICA) coupled with the quality assessment (QA) band of Landsat 8, an approach for thin cloud removal in Landsat 8 operational land imager (OLI) data was developed. After the ICA transformation of the visible, near infrared, short-wavelength and cirrus bands of OLI data, cloud component was identified by the mixing matrix. Then, a cloud mask derived from the analysis of the QA band was formed such that an image pixel with and without cloud cover was delineated. The cloud component and cloud mask were used to remove the thin clouds. Thin clouds disappeared visually within the OLI data. Using another cloud-free image acquired in the previous overflight as the reference, we assessed the accuracy level of the cloud removal. Before and after the cloud removal, the spatial correlation coefficients increased from 0.69 to 0.83 in band 1, 0.75 to 0.86 in band 2, 0.81 to 0.88 in band 3, 0.87 to 0.91 in band 4, and no change in bands 5, 6, and 7 for pixels identified with cloud cover.
引用
收藏
页码:921 / 924
页数:4
相关论文
共 50 条
  • [31] Soil salinity mapping using Landsat 8 OLI data and regression modeling in the Great Hungarian Plain
    Ghada Sahbeni
    SN Applied Sciences, 2021, 3
  • [32] Estimating the leaf area index in Indian tropical forests using Landsat-8 OLI data
    Middinti, Suresh
    Thumaty, Kiran Chand
    Gopalakrishnan, Rajashekar
    Jha, Chandra Shekhar
    Thatiparthi, Byragi Reddy
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (23) : 6769 - 6789
  • [33] A NEW AEROSOL RETRIEVAL ALGORITHM BASED ON STATISTICAL SEGMENTATION USING LANDSAT-8 OLI DATA
    Xiong, Yajv
    Chen, Yunping
    Han, Weihong
    Tong, Ling
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4059 - 4062
  • [34] Estimating earthquake-damage areas using Landsat-8 OLI surface reflectance data
    Fan, Xiwei
    Nie, Gaozhong
    Deng, Yan
    An, Jiwen
    Zhou, Junxue
    Xia, Chaoxu
    Pang, Xiaoke
    INTERNATIONAL JOURNAL OF DISASTER RISK REDUCTION, 2019, 33 : 275 - 283
  • [35] Soil salinity mapping using Landsat 8 OLI data and regression modeling in the Great Hungarian Plain
    Sahbeni, Ghada
    SN APPLIED SCIENCES, 2021, 3 (05):
  • [36] Quantitative Retrieval of Soil Salinity Using Landsat 8 OLI Imagery
    Dong, Ruolin
    Na, Xiaodong
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [37] Using Landsat 8 OLI data to differentiate Sargassum and Ulva prolifera blooms in the South Yellow Sea
    Sun, Deyong
    Chen, Ying
    Wang, Shengqiang
    Zhang, Hailong
    Qiu, Zhongfeng
    Mao, Zhihua
    He, Yijun
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 98
  • [38] Icy lakes extraction and water-ice classification using Landsat 8 OLI multispectral data
    Barbieux, Kevin
    Charitsi, Antigoni
    Merminod, Bertrand
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (11) : 3646 - 3678
  • [39] Study of Land Cover Classes and Retrieval of Leaf Area Index Using Landsat 8 OLI Data
    Verma, Amit Kumar
    Garg, P. K.
    Prasad, K. S. Hari
    Dadhwal, V. K.
    MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS VI, 2016, 9880
  • [40] WSB-DA: Water Surface Boundary Detection Algorithm Using Landsat 8 OLI Data
    Singh, Kartar
    Ghosh, Mili
    Sharma, Shubha Rani
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (01) : 363 - 368