PTR-MS;
ion trap;
volatile organic compound;
collision induced dissociation;
trace gas detection;
D O I:
10.1016/j.ijms.2006.09.031
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
O56 [分子物理学、原子物理学];
学科分类号:
070203 ;
070304 ;
081704 ;
1406 ;
摘要:
The development of a new proton-transfer reaction ion trap mass spectrometer (PIT-MS) from a commercially available ion trap system is presented and the advantages of using an ion trap over a quadrupole mass filter are explored. For our PIT-MS we determine the optimal kinetic energy parameter E/N (95 Td) to be significantly lower than for the more conventional proton-transfer reaction mass spectrometer (PTR-MS) (120 Td) with a quadrupole mass filter. This gives a theoretical increase in sensitivity of similar to 25% with respect to the generally used 120 Td. The limits of detection of the PIT-MS are still one order of magnitude higher than for the PTR-MS system, but better detection electronics are thought to improve this in the near future. The PlT-MS system is tested in a comparison with our PTR-MS on measurements of volatile compounds from an Elstar apple, where we show the time behavior and concentration determination of the PIT-MS to be reliable. In this comparison, we also show the applicability of and problems related to the use of collision induced dissociation (CID) analysis for the identification of compounds. The lower degree of fragmentation upon proton transfer is identified as an additional advantage of the use of low E/N-values. (C) 2006 Elsevier B.V. All rights reserved.