On the prediction of creep behaviour of alloy 617 using Kachanov-Rabotnov model coupled with multi-objective genetic algorithm optimisation

被引:8
|
作者
Choi, J. [1 ,2 ]
Bortolan Neto, L. [1 ,2 ]
Wright, R. N. [3 ]
Kruzic, J. J. [2 ]
Muransky, O. [1 ,2 ]
机构
[1] Australian Nucl Sci & Technol Org ANSTO, Lucas Heights, NSW, Australia
[2] Univ New South Wales UNSW Sydney, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
[3] Idaho Natl Lab, Idaho Falls, ID 83415 USA
关键词
Creep deformation; Alloy; 617; Kachanov-rabotnov model; Multi -objective genetic algorithm; Lifetime prediction; OXIDATION; MUTATION; DAMAGE;
D O I
10.1016/j.ijpvp.2022.104721
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The accurate prediction of elevated-temperature creep behaviour of alloys is important for preventing catastrophic failure of systems operating under prolonged elevated temperature-stress conditions. Here, we couple the Kachanov-Rabotnov (K-R) creep model with a multi-objective genetic algorithm (MOGA) to predict the creep behaviour of Alloy 617 at 800 degrees C, 900 degrees C, and 1000 degrees C, under various stress conditions. It is shown that the MOGAoptimised K-R creep model can capture the overall elevated-temperature behaviour of the alloy at 800 degrees C under a wide range of stress conditions. However, at 900 degrees C and 1000 degrees C, oxidation leads to the atypical accumulation of creep plasticity, which the K-R model cannot account for. Nevertheless, it is shown that the proposed methodology of optimising the K-R model with a MOGA can consistently provide accurate results within the limits of the K-R model.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Creep damage characterization of UNS N10003 alloy based on a numerical simulation using the Norton creep law and Kachanov–Rabotnov creep damage model
    Xiao-Yan Wang
    Xiao Wang
    Xiao-Chun Zhang
    Shi-Feng Zhu
    Nuclear Science and Techniques, 2019, 30
  • [22] Configuration of a Genetic Algorithm for Multi-Objective Optimisation of Solar Gain to Buildings
    Evins, Ralph
    GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2010, : 2003 - 2006
  • [23] A Multi-Objective Genetic Algorithm Optimisation of Plate-Fin Heatsinks
    Abdelsalam, Younis Osama
    Alimohammadi, Sajad
    Pelletier, Quentin
    Persoons, Tim
    2017 23RD INTERNATIONAL WORKSHOP ON THERMAL INVESTIGATIONS OF ICS AND SYSTEMS (THERMINIC), 2017,
  • [24] The new model of parallel genetic algorithm in multi-objective optimization problems - Divided range multi-objective genetic algorithm
    Hiroyasu, T
    Miki, M
    Watanabe, S
    PROCEEDINGS OF THE 2000 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2000, : 333 - 340
  • [25] Bridge Pier Scour Prediction by Multi-Objective Optimization using the Genetic Algorithm
    Kim, I.
    Fard, M. Y.
    Chattopadhyay, A.
    STRUCTURAL HEALTH MONITORING 2013, VOLS 1 AND 2, 2013, : 143 - 150
  • [26] Traffic accident severity prediction using a novel multi-objective genetic algorithm
    Hashmienejad, Seyed Hessam-Allah
    Hasheminejad, Seyed Mohammad Hossein
    INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2017, 22 (04) : 425 - 440
  • [27] Multi-objective model optimisation using genetic algorithms for pleurotus sp. cultivation
    Zainol, N.
    Fakharudin, A. S.
    Dzulkefli, N. A.
    Bakar, M. F. A.
    SYMPOSIUM ON ENERGY SYSTEMS 2019 (SES 2019), 2020, 863
  • [28] An Effective Chronic Disease Prediction using Multi-Objective Firefly Optimisation Random Forest Algorithm
    Priya, S. Kavi
    Saranya, N.
    IETE JOURNAL OF RESEARCH, 2024, 70 (01) : 307 - 321
  • [29] Modelling and multi-objective optimisation of squeeze casting process using regression analysis and genetic algorithm
    Patel, G. C. Manjunath
    Krishna, Prasad
    Parappagoudar, Mahesh B.
    AUSTRALIAN JOURNAL OF MECHANICAL ENGINEERING, 2016, 14 (03) : 182 - 198
  • [30] Multi-Objective Optimisation of hybrid MSF-RO desalination system using Genetic Algorithm
    Abdulrahim, Hassan K.
    Alasfour, Fuad N.
    INTERNATIONAL JOURNAL OF EXERGY, 2010, 7 (03) : 387 - 424