On the prediction of creep behaviour of alloy 617 using Kachanov-Rabotnov model coupled with multi-objective genetic algorithm optimisation

被引:8
|
作者
Choi, J. [1 ,2 ]
Bortolan Neto, L. [1 ,2 ]
Wright, R. N. [3 ]
Kruzic, J. J. [2 ]
Muransky, O. [1 ,2 ]
机构
[1] Australian Nucl Sci & Technol Org ANSTO, Lucas Heights, NSW, Australia
[2] Univ New South Wales UNSW Sydney, Sch Mech & Mfg Engn, Sydney, NSW 2052, Australia
[3] Idaho Natl Lab, Idaho Falls, ID 83415 USA
关键词
Creep deformation; Alloy; 617; Kachanov-rabotnov model; Multi -objective genetic algorithm; Lifetime prediction; OXIDATION; MUTATION; DAMAGE;
D O I
10.1016/j.ijpvp.2022.104721
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The accurate prediction of elevated-temperature creep behaviour of alloys is important for preventing catastrophic failure of systems operating under prolonged elevated temperature-stress conditions. Here, we couple the Kachanov-Rabotnov (K-R) creep model with a multi-objective genetic algorithm (MOGA) to predict the creep behaviour of Alloy 617 at 800 degrees C, 900 degrees C, and 1000 degrees C, under various stress conditions. It is shown that the MOGAoptimised K-R creep model can capture the overall elevated-temperature behaviour of the alloy at 800 degrees C under a wide range of stress conditions. However, at 900 degrees C and 1000 degrees C, oxidation leads to the atypical accumulation of creep plasticity, which the K-R model cannot account for. Nevertheless, it is shown that the proposed methodology of optimising the K-R model with a MOGA can consistently provide accurate results within the limits of the K-R model.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Creep curve modeling of hastelloy-X alloy by using the Nonlinear regression method in the Kachanov-Rabotnov creep model
    Kim, Woo Gon
    Yin, Song Nan
    Ryu, Woo Seog
    Kim, Yong Wan
    Yi, Won
    MECHANICAL BEHAVIOR OF MATERIALS X, PTS 1AND 2, 2007, 345-346 : 589 - +
  • [2] Prediction of Creep Behaviour of 316LN SS Under Uniaxial and Multiaxial Stress State Using Kachanov-Rabotnov Model at 923 K
    Praveen, C.
    Christopher, J.
    Ganesan, V
    Reddy, G. V. Prasad
    Albert, Shaju K.
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2020, 73 (06) : 1645 - 1653
  • [3] Creep damage characterization of UNS N10003 alloy based on a numerical simulation using the Norton creep law and Kachanov-Rabotnov creep damage model
    Wang, Xiao-Yan
    Wang, Xiao
    Zhang, Xiao-Chun
    Zhu, Shi-Feng
    NUCLEAR SCIENCE AND TECHNIQUES, 2019, 30 (04)
  • [4] Characterization of the Creep Deformation and Rupture Behavior of DS GTD-111 Using the Kachanov-Rabotnov Constitutive Model
    Stewart, Calvin M.
    Gordon, Ali P.
    Hogan, Erik A.
    Saxena, Ashok
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2011, 133 (02):
  • [5] Optimisation of cutting parameters using a multi-objective genetic algorithm
    Solimanpur, M.
    Ranjdoostfard, F.
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2009, 47 (21) : 6019 - 6036
  • [6] Multi-objective optimisation of multipass turning by using a genetic algorithm
    Quiza Sardinas, Ramon
    Albelo Mengana, Jorge E.
    Davim, J. Paulo
    INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY, 2009, 35 (1-2): : 134 - 144
  • [7] Multi-Objective Optimisation of Hot Forging Processes using a Genetic Algorithm
    Castro, C. F.
    Antonio, C. C.
    Sousa, L. C.
    PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY, 2010, 93
  • [8] Trading Strategy Optimisation with a Multi-objective Genetic Algorithm
    Liu, Yu
    2023 11TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: IOT AND SMART CITY, ITIOTSC 2023, 2023, : 186 - 191
  • [9] Prediction of Creep Behaviour of 316LN SS Under Uniaxial and Multiaxial Stress State Using Kachanov–Rabotnov Model at 923 K
    C. Praveen
    J. Christopher
    V. Ganesan
    G. V. Prasad Reddy
    Shaju K. Albert
    Transactions of the Indian Institute of Metals, 2020, 73 : 1645 - 1653
  • [10] Model-based multi-objective optimisation of reheating furnace operations using genetic algorithm
    Hu, Yukun
    Tan, C. K.
    Broughton, Jonathan
    Roach, Paul Alun
    Varga, Liz
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 2143 - 2151