Double-oxide sulfur host for advanced lithium-sulfur batteries

被引:101
|
作者
Xue, Weijiang [1 ,2 ,3 ]
Yan, Qing-Bo [2 ,3 ,4 ]
Xu, Guiyin [2 ,3 ]
Suo, Liumin [2 ,3 ]
Chen, Yuming [2 ,3 ]
Wang, Chao [2 ,3 ]
Wang, Chang-An [1 ]
Li, Ju [2 ,3 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金; 美国国家科学基金会;
关键词
Polysulfides adsorption; Double-oxide sulfur host; Sulfur cathode; Secondary particle; ION BATTERY; PERFORMANCE; COMPOSITE; CATHODE; POLYSULFIDES; CHEMISTRY; DESIGN; PAPER; LIFE;
D O I
10.1016/j.nanoen.2017.05.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although lithium-sulfur batteries show fascinating potential for high-capacity energy storage, their practical applications are hindered by the fast capacity decay and low sulfur utilization at high sulfur loading. Herein we report an efficient sulfur host based on two oxides, in which SiO2 hollow spheres with radial meso-channels are covered by a thin TiO2 coating. SiO2 spheres not only yield high sulfur loading as high as 80 wt% but also possess strong lithium polysulfides (LiPS) adsorption capability. The thin TiO2 coating can effectively prevent the LiPS outward diffusion, giving rise to a long-term stability. Meanwhile, the oxide-supported carbon from the carbonization of surfactants enables good electrical conductivity to facilitate electron access and improve sulfur utilization. Experimental and theoretical studies show the strong adsorption of LiPS by SiO2. Benefitting from the unique structural and compositional advantages, we achieve a high sulfur loading up to 80 wt% with similar to 65.5% and 33% capacity retentions over 500 and 1000 cycles when tested at 0.5 C and 1 C, respectively.
引用
收藏
页码:12 / 18
页数:7
相关论文
共 50 条
  • [41] Advanced chemical strategies for lithium-sulfur batteries: A review
    Fan, Xiaojing
    Sun, Wenwei
    Meng, Fancheng
    Xing, Aiming
    Liu, Jiehua
    GREEN ENERGY & ENVIRONMENT, 2018, 3 (01) : 2 - 19
  • [42] MoP nanoparticles encapsulated in N-doped carbon nanotubes as sulfur host for advanced lithium-sulfur batteries
    Guozhi Wu
    Shanqing Li
    Zheng Chen
    Ajiao Sun
    Jie Yang
    Sang Woo Joo
    Jiarui Huang
    Nano Research, 2024, 17 : 2736 - 2745
  • [43] MoP nanoparticles encapsulated in N-doped carbon nanotubes as sulfur host for advanced lithium-sulfur batteries
    Wu, Guozhi
    Li, Shanqing
    Chen, Zheng
    Sun, Ajiao
    Yang, Jie
    Joo, Sang Woo
    Huang, Jiarui
    NANO RESEARCH, 2024, 17 (04) : 2736 - 2745
  • [44] Electrospun Nanofibers Enabled Advanced Lithium-Sulfur Batteries
    Zhu, Jiadeng
    Cheng, Hui
    Zhu, Pei
    Li, Ya
    Gao, Qiang
    Zhang, Xiangwu
    ACCOUNTS OF MATERIALS RESEARCH, 2022, 3 (02): : 149 - 160
  • [45] The strategies of advanced cathode composites for lithium-sulfur batteries
    Zhou, Kuan
    Fan, XiaoJing
    Wei, XiangFeng
    Liu, JieHua
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2017, 60 (02) : 175 - 185
  • [46] Review on Advanced Functional Separators for Lithium-Sulfur Batteries
    Huang Jiaqi
    Sun Yingzhi
    Wang Yunfei
    Zhang Qiang
    ACTA CHIMICA SINICA, 2017, 75 (02) : 173 - 188
  • [47] Review of carbon materials for advanced lithium-sulfur batteries
    Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing
    100084, China
    Xinxing Tan Cailiao, 4 (241-264):
  • [48] The strategies of advanced cathode composites for lithium-sulfur batteries
    ZHOU Kuan
    FAN XiaoJing
    WEI XiangFeng
    LIU JieHua
    Science China(Technological Sciences), 2017, 60 (02) : 175 - 185
  • [49] Review of carbon materials for advanced lithium-sulfur batteries
    Zhang Qiang
    Cheng Xin-bing
    Huang Jia-qi
    Peng Hong-jie
    Wei Fei
    NEW CARBON MATERIALS, 2014, 29 (04) : 241 - 264
  • [50] The strategies of advanced cathode composites for lithium-sulfur batteries
    ZHOU Kuan
    FAN XiaoJing
    WEI XiangFeng
    LIU JieHua
    Science China(Technological Sciences) , 2017, (02) : 175 - 185