Electrical resistivity behaviour of sodium substituted manganites: electron-phonon, electron-electron and electron-magnon interactions

被引:31
|
作者
Varshney, D. [1 ,2 ]
Choudhary, D. [1 ]
Shaikh, M. W. [1 ]
Khan, E. [1 ]
机构
[1] Devi Ahilya Univ, Sch Phys, Indore 452001, Madhya Pradesh, India
[2] Devi Ahilya Univ, Sch Instrumentat, USIC Bhawan, Indore 452001, Madhya Pradesh, India
来源
EUROPEAN PHYSICAL JOURNAL B | 2010年 / 76卷 / 02期
关键词
COLOSSAL MAGNETORESISTANCE; FERROMAGNETIC STATE; DOPED MANGANITES; THIN-FILMS; TRANSPORT; LA1-XSRXMNO3; CONDUCTION; LAMNO3; HEAT;
D O I
10.1140/epjb/e2010-00192-4
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The present paper focuses on a quantitative analysis of the metallic and semiconducting behaviour of electrical resistivity in perovskite manganites La1- (x) Na (x) MnO3 (x = 0.1, 0.17). An effective interionic interaction potential (EIoIP) with the long-range Coulomb, van der Waals (vdW) interaction and short-range repulsive interaction up to second neighbour ions within the Hafemeister and Flygare approach was formulated to estimate the Debye and Einstein temperature and was found to be consistent with the available experimental data. For both doping concentration x = 0.1 and 0.17 the electron-phonon, electron-electron and electron-magnon interactions are effective to describe the resistivity behaviour for temperatures less than the metal-insulator transition (T (P) ). For temperatures, T > T (P) , the semiconducting nature is discussed with Mott's variable range hopping (VRH) model and small polaron conduction (SPC) model. The fitted density of states as revealed from VRH differs drastically from the experimental value and therefore means the VRH model is not a viable option for describing the resistivity behaviour in high temperature region, T > T (P) . The SPC model consistently retraces the higher temperature resistivity behaviour (T > theta (D) /2). The metallic and semiconducting resistivity behaviour of sodium substituted manganites are analysed, to our knowledge, for the first time highlighting the importance of electron-phonon, electron-electron, electron-magnon interactions and small polaron conduction.
引用
收藏
页码:327 / 338
页数:12
相关论文
共 50 条
  • [12] Renormalization group approaches for systems with electron-electron and electron-phonon interactions
    Hewson, AC
    Meyer, D
    CONCEPTS IN ELECTRON CORRELATION, 2003, 110 : 199 - 207
  • [13] Electron-phonon and electron-electron interactions in organic field effect transistors
    Fratini, S.
    Morpurgo, A. F.
    Ciuchi, S.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2008, 69 (09) : 2195 - 2198
  • [14] Electron-Phonon Interactions and the Intrinsic Electrical Resistivity of Graphene
    Park, Cheol-Hwan
    Bonini, Nicola
    Sohier, Thibault
    Samsonidze, Georgy
    Kozinsky, Boris
    Calandra, Matteo
    Mauri, Francesco
    Marzari, Nicola
    NANO LETTERS, 2014, 14 (03) : 1113 - 1119
  • [15] ELECTRON-PHONON VS ELECTRON-ELECTRON INTERACTIONS IN LOW-DIMENSIONAL SOLIDS
    GIRLANDO, A
    PAINELLI, A
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1993, 234 : 145 - 154
  • [16] Effective electron-electron and electron-phonon interactions in the Hubbard-Holstein model
    Aprea, G.
    Di Castro, C.
    Grilli, M.
    Lorenzana, J.
    NUCLEAR PHYSICS B, 2006, 744 (03) : 277 - 294
  • [17] Kohn anomaly and interplay of electron-electron and electron-phonon interactions in epitaxial graphene
    Zhou, S. Y.
    Siegel, D. A.
    Fedorov, A. V.
    Lanzara, A.
    PHYSICAL REVIEW B, 2008, 78 (19):
  • [18] ELECTRON-MAGNON INTERACTION AND THE ELECTRICAL-RESISTIVITY OF TB
    ANDERSEN, NH
    SMITH, H
    PHYSICAL REVIEW B, 1979, 19 (01): : 384 - 387
  • [19] Superconductivity due to cooperation of electron-electron and electron-phonon interactions at quarter filling
    Clay, R. T.
    Roy, D.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [20] Electron-Electron and Electron-Phonon Interactions in Graphene on a Semiconductor Substrate: Simple Estimations
    Davydov, S. Yu.
    SEMICONDUCTORS, 2018, 52 (03) : 335 - 340