Understanding the Influences of EEG Reference: A Large-Scale Brain Network Perspective

被引:75
|
作者
Lei, Xu [1 ,2 ]
Liao, Keren [1 ,2 ]
机构
[1] Southwest Univ, Fac Psychol, Sleep & NeuroImaging Ctr, Chongqing, Peoples R China
[2] Minist Educ, Key Lab Cognit & Personal, Chongqing, Peoples R China
来源
FRONTIERS IN NEUROSCIENCE | 2017年 / 11卷
基金
高等学校博士学科点专项科研基金;
关键词
EEG reference; large-scale networks; average reference; reference electrode standardization technique; INFINITY REFERENCE; FUNCTIONAL SPECIALIZATION; AVERAGE REFERENCE; THEORETICAL BASIS; VOLUME CONDUCTOR; CORTEX; RECORDINGS; SEARCH; SYSTEM; ZERO;
D O I
10.3389/fnins.2017.00205
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The influence of reference is a critical issue for the electroencephalography (EEG) and event-related potentials (ERPs) studies. However, previous investigations concentrated less on the location of source at a systematic neuroscience level. Our goal was to examine the EEG signal associated with the locations from a common network parcellation of the human brain function, offering a system perspective of the influence of EEG reference. In our simulation, vertices uniformly distributed in eight large-scale brain networks were adopted to generate the scalp EEG. The brain networks contain the visual, somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, default networks, and the deep brain structure. The distributions of the most sensitive and neutral electrodes were calculated for each network based on the lead-field matrix. While the most sensitive electrode had a network-specific symmetric pattern, the electrodes in scalp surface had approximately equal chance to be the most neutral electrode. Simulated data were referenced at the FCz, the Oz, the mean mastoids (MM), the average (AVE), and the infinity reference obtained by the reference electrode standardization technique (REST). Intriguingly, the relative error followed the pattern REST < AVE< MM < (Fez, Oz), regardless of the number of electrodes and signal-to-noise ratios. Our findings suggested that REST was a potentially preferable reference for all large-scale networks and AVE virtually performed as REST under several conditions. As EEG and ERPs experiments within the same behavioral domain always have activations in some specific brain networks, the comparisons revealed here may provide a valuable recommendation for reference selection in clinical and basic researches.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Mixtures of large-scale dynamic functional brain network modes
    Gohil, Chetan
    Roberts, Evan
    Timms, Ryan
    Skates, Alex
    Higgins, Cameron
    Quinn, Andrew
    Pervaiz, Usama
    van Amersfoort, Joost
    Notin, Pascal
    Gal, Yarin
    Adaszewski, Stanislaw
    Woolrich, Mark
    [J]. NEUROIMAGE, 2022, 263
  • [22] The hippocampus: A central node in a large-scale brain network for memory
    Huijgen, J.
    Samson, S.
    [J]. REVUE NEUROLOGIQUE, 2015, 171 (03) : 204 - 216
  • [23] Controversies and progress on standardization of large-scale brain network nomenclature
    Uddin, Lucina Q.
    Betzel, Richard F.
    Cohen, Jessica R.
    Damoiseaux, Jessica S.
    De Brigard, Felipe
    Eickhoff, Simon B.
    Fornito, Alex
    Gratton, Caterina
    Gordon, Evan M.
    Laird, Angela R.
    Larson-Prior, Linda
    McIntosh, A. Randal
    Nickerson, Lisa D.
    Pessoa, Luiz
    Pinho, Ana Luisa
    Poldrack, Russell A.
    Razi, Adeel
    Sadaghiani, Sepideh
    Shine, James M.
    Yendiki, Anastasia
    Yeo, B. T. Thomas
    Spreng, R. Nathan
    [J]. NETWORK NEUROSCIENCE, 2023, 7 (03) : 864 - 905
  • [24] Improving the Understanding of Genetic Variants in Rare Disease With Large-scale Reference Populations
    Whiffin, Nicola
    Ware, James S.
    O'Donnell-Luria, Anne
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 322 (13): : 1305 - 1306
  • [25] The Virtual Brain: a neuroinformatics platform for simulating large-scale brain network models
    Paula Sanz Leon
    Marmaduke Woodman
    Randy McIntosh
    Viktor Jirsa
    [J]. BMC Neuroscience, 14 (Suppl 1)
  • [26] Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept
    Franke, Barbara
    Stein, Jason L.
    Ripke, Stephan
    Anttila, Verneri
    Hibar, Derrek P.
    van Hulzen, Kimm J. E.
    Arias-Vasquez, Alejandro
    Smoller, Jordan W.
    Nichols, Thomas E.
    Neale, Michael C.
    McIntosh, Andrew M.
    Lee, Phil
    McMahon, Francis J.
    Meyer-Lindenberg, Andreas
    Mattheisen, Manuel
    Andreassen, Ole A.
    Gruber, Oliver
    Sachdev, Perminder S.
    Roiz-Santianez, Roberto
    Saykin, Andrew J.
    Ehrlich, Stefan
    Mather, Karen A.
    Turner, Jessica A.
    Wright, Margaret J.
    O'Donovan, Michael C.
    Thompson, Paul M.
    Neale, Benjamin M.
    Medland, Sarah E.
    Sullivan, Patrick F.
    [J]. NATURE NEUROSCIENCE, 2016, 19 (03) : 420 - +
  • [27] Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept
    Barbara Franke
    Jason L Stein
    Stephan Ripke
    Verneri Anttila
    Derrek P Hibar
    Kimm J E van Hulzen
    Alejandro Arias-Vasquez
    Jordan W Smoller
    Thomas E Nichols
    Michael C Neale
    Andrew M McIntosh
    Phil Lee
    Francis J McMahon
    Andreas Meyer-Lindenberg
    Manuel Mattheisen
    Ole A Andreassen
    Oliver Gruber
    Perminder S Sachdev
    Roberto Roiz-Santiañez
    Andrew J Saykin
    Stefan Ehrlich
    Karen A Mather
    Jessica A Turner
    Emanuel Schwarz
    Anbupalam Thalamuthu
    Yin Yao
    Yvonne Y W Ho
    Nicholas G Martin
    Margaret J Wright
    Michael C O'Donovan
    Paul M Thompson
    Benjamin M Neale
    Sarah E Medland
    Patrick F Sullivan
    [J]. Nature Neuroscience, 2016, 19 : 420 - 431
  • [28] LARGE-SCALE BRAIN NETWORK OSCILLATORY INTERACTIONS SUPPORT COGNITIVE CONTROL PROCESSES, AND HAVE IMPLICATIONS FOR UNDERSTANDING BEHAVIOR
    Cohen, Mike X.
    [J]. PSYCHOPHYSIOLOGY, 2013, 50 : S22 - S22
  • [29] Understanding the Influences of Large-scale Atmospheric and Oceanic Circulations on the Snow -cover of a Himalayan Basin
    Sengupta, Shairik
    Bhowmik, Rajarshi Das
    [J]. PROCEEDINGS OF THE 39TH IAHR WORLD CONGRESS, 2022, : 3011 - 3019
  • [30] Novel large scale brain network models for EEG epileptic pattern generations
    Al-Hossenat, Auhood
    Song, Bo
    Wen, Peng
    Li, Yan
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 194