Minimization of electrode polarization effect by nanogap electrodes for biosensor applications

被引:0
|
作者
Oh, S [1 ]
Lee, JS [1 ]
Jeong, KH [1 ]
Lee, LP [1 ]
机构
[1] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanogap electrodes-based dielectric spectroscopy is introduced to create ultrasensitive biomolecular sensors by minimizing the effects of electrode polarization. The electrode polarization is a major source of error in determining the impedance of biological Samples in solution. The unwanted double layer impedance due to the electrode polarization impedance is caused by the accumulation of ions on the surface of electrode. This effect becomes more dominant in low frequency region (< 1 kHz). In this paper we describe nanogap electrodes-based biomolecular measurements that can minimize electrode polarization effects since the double layers overlap and potential drop inside of the electrode gap can be reduced in nanoscale (<100 nm) electrode spacing.
引用
收藏
页码:52 / 55
页数:4
相关论文
共 50 条
  • [21] Three-Dimensionally Extended Host Electrodes for Biosensor Applications
    Lo, Yu-Chun
    Lee, Kuan-Ting
    Liang, Yi-Ching
    Liu, Dai-Ming
    Matsushita, Nobuhiro
    Ikoma, Toshiyuki
    Lu, Shih-Yuan
    CHEMELECTROCHEM, 2016, 3 (04): : 552 - 557
  • [22] ELECTROCHEMICAL ACTIVATION OF CARBON ELECTRODES IN BASE - MINIMIZATION OF DOPAMINE ADSORPTION AND ELECTRODE CAPACITANCE
    ANJO, DM
    KAHR, M
    KHODABAKHSH, MM
    NOWINSKI, S
    WANGER, M
    ANALYTICAL CHEMISTRY, 1989, 61 (23) : 2603 - 2608
  • [23] The effect of electrode microstructure on cathodic polarization
    Zhao, F
    Jiang, Y
    Lin, GY
    Virkar, AV
    SOLID OXIDE FUEL CELLS VII (SOFC VII), 2001, 2001 (16): : 501 - 510
  • [24] Sensor and biosensor preparation, optimisation and applications of Prussian Blue modified electrodes
    Ricci, F
    Palleschi, G
    BIOSENSORS & BIOELECTRONICS, 2005, 21 (03): : 389 - 407
  • [25] Peptide nanotube-modified electrodes for enzyme-biosensor applications
    Yemini, M
    Reches, M
    Gazit, E
    Rishpon, J
    ANALYTICAL CHEMISTRY, 2005, 77 (16) : 5155 - 5159
  • [26] Nanostructured zinc oxide particles in chemically modified electrodes for biosensor applications
    Kumar, S. Ashok
    Chen, Shen-Ming
    ANALYTICAL LETTERS, 2008, 41 (02) : 141 - 158
  • [27] Impedance Characteristics of Gold-Extended-Gate Electrodes for Biosensor Applications
    Lyu, Hong-Kun
    Choi, Ho-Jin
    Kim, Kang-Pil
    Han, Yoon Soo
    Shin, Jang-Kyoo
    SENSOR LETTERS, 2011, 9 (01) : 152 - 156
  • [28] The Influence of Electrode Angle on the Minimization of the Aberration Coefficients of the Two Electrodes Electrostatic Immersion Lens
    Al-Khashab, M. A.
    Ahmad, A. A.
    JORDAN JOURNAL OF PHYSICS, 2012, 5 (02): : 67 - 75
  • [29] A biomolecular detection method based on charge pumping in a nanogap embedded field-effect-transistor biosensor
    Kim, Sungho
    Ahn, Jae-Hyuk
    Park, Tae Jung
    Lee, Sang Yup
    Choi, Yang-Kyu
    APPLIED PHYSICS LETTERS, 2009, 94 (24)
  • [30] Proposal of an Embedded Nanogap Biosensor by a Graphene Nanoribbon Field-Effect Transistor for Biological Samples Detection
    Anvarifard, Mohammad K.
    Ramezani, Zeinab
    Amiri, Iraj Sadegh
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2020, 217 (02):