Time Fractional Diffusion Equations and Analytical Solvable Models

被引:2
|
作者
Bakalis, Evangelos [1 ]
Zerbetto, Francesco [1 ]
机构
[1] Univ Bologna, Dipartimento Chim G Ciamician, VF Selmi 2, I-40126 Bologna, Italy
关键词
ANOMALOUS DIFFUSION; RANDOM-WALKS;
D O I
10.1088/1742-6596/738/1/012106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The anomalous diffusion of a particle that moves in complex environments is analytically studied by means of the time fractional diffusion equation. The influence on the dynamics of a random moving particle caused by a uniform external field is taken into account. We extract analytical solutions in terms either of the Mittag-Leffler functions or of the M-Wright function for the probability distribution, for the velocity autocorrelation function as well as for the mean and the mean square displacement. Discussion of the applicability of the model to real systems is made in order to provide new insight of the medium from the analysis of the motion of a particle embedded in it.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Homogenization of time-fractional diffusion equations with periodic coefficients
    Hu, Jiuhua
    Li, Guanglian
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 408 (408)
  • [42] Stochastic solution of space-time fractional diffusion equations
    Meerschaert, MM
    Benson, DA
    Scheffler, HP
    Baeumer, B
    PHYSICAL REVIEW E, 2002, 65 (04): : 4
  • [43] Decay estimates for evolutionary equations with fractional time-diffusion
    Serena Dipierro
    Enrico Valdinoci
    Vincenzo Vespri
    Journal of Evolution Equations, 2019, 19 : 435 - 462
  • [44] Implicit finite difference approximation for time fractional diffusion equations
    Murio, Diego A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) : 1138 - 1145
  • [45] NUMERICAL SIMULATIONS FOR SPACE-TIME FRACTIONAL DIFFUSION EQUATIONS
    Ling, Leevan
    Yamamoto, Masahiro
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2013, 10 (02)
  • [46] An implicit RBF meshless approach for time fractional diffusion equations
    Q. Liu
    Y. T. Gu
    P. Zhuang
    F. Liu
    Y. F. Nie
    Computational Mechanics, 2011, 48 : 1 - 12
  • [47] On the invariant solutions of space/time-fractional diffusion equations
    Bahrami, F.
    Najafi, R.
    Hashemi, M. S.
    INDIAN JOURNAL OF PHYSICS, 2017, 91 (12) : 1571 - 1579
  • [48] DETERMINATION OF TIME DEPENDENT FACTORS OF COEFFICIENTS IN FRACTIONAL DIFFUSION EQUATIONS
    Fujishiro, Kenichi
    Kian, Yavar
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2016, 6 (02) : 251 - 269
  • [49] Global uniqueness in an inverse problem for time fractional diffusion equations
    Kian, Y.
    Oksanen, L.
    Soccorsi, E.
    Yamamoto, M.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (02) : 1146 - 1170
  • [50] CAUCHY PROBLEMS FOR THE TIME-FRACTIONAL DEGENERATE DIFFUSION EQUATIONS
    Borikhanov, M. B.
    Smadiyeva, A. G.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 117 (01): : 15 - 23