Prediction of temperature profiles in helical plasmas by integrated code coupled with gyrokinetic transport models

被引:2
|
作者
Toda, S. [1 ,2 ]
Nunami, M. [1 ,3 ]
Sugama, H. [1 ,4 ]
机构
[1] Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[2] Grad Univ Adv Studies, Toki, Gifu 5095292, Japan
[3] Nagoya Univ, Grad Sch Sci, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
[4] Univ Tokyo, Dept Adv Energy, Kashiwanoha 5-1-5, Kashiwa, Chiba 2778561, Japan
关键词
turbulence; transport model; gyrokinetic simulation; helical plasmas; ZONAL FLOWS; SIMULATIONS;
D O I
10.1088/1361-6587/ac77b8
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Transport simulation is performed by integrated code using reduced transport models (Toda S et al 2019 Phys. Plasmas 26 012510) in a kinetic electron condition for turbulent heat transport including the effect of zonal flows in helical plasmas. A reduced model can be formulated for the heat diffusivity using only the linear properties, or can be constructed by considering the expression of the quasilinear flux. These reduced models reproduce nonlinear gyrokinetic simulation results for ion temperature gradient mode turbulence by a linear growth rate and zonal flow decay time. Temperature profiles can be obtained when the turbulent heat transport is evaluated by reduced models at each time step in the evolution of integrated simulation. Computational cost using the reduced models where linear gyrokinetic simulation is performed at each time step in the integrated simulation is about two orders of magnitude lower than that using nonlinear gyrokinetic simulation. Stationary temperature profiles are predicted by simulation, in which, the linear simulation is performed at each time step in the integrated simulation for steady heating power. The density profile and the edge temperature are needed in this simulation.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] A reduced model for ion temperature gradient turbulent transport in helical plasmas
    Nunami, M.
    Watanabe, T. -H.
    Sugama, H.
    PHYSICS OF PLASMAS, 2013, 20 (09)
  • [12] Integrated transport simulations of high ion temperature plasmas of LHD
    Murakami, S.
    Yamaguchi, H.
    Sakai, A.
    Wakasa, A.
    Fukuyama, A.
    Nagaoka, K.
    Takahashi, H.
    Nakano, H.
    Osakabe, M.
    Ida, K.
    Yoshinuma, M.
    Yokoyama, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (05)
  • [13] Neutral transport code for rovibrational population calculation of molecular hydrogen in large helical device plasmas
    Sawada, Keiji
    Nakamura, Hiroaki
    Saito, Seiki
    Kawamura, Gakushi
    Kobayashi, Masahiro
    Haga, Kenta
    Migita, Ryusei
    Sawada, Takumi
    Hasuo, Masahiro
    CONTRIBUTIONS TO PLASMA PHYSICS, 2020, 60 (5-6)
  • [14] Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas
    Huang, B.
    Satake, S.
    Kanno, R.
    Sugama, H.
    Matsuoka, S.
    PHYSICS OF PLASMAS, 2017, 24 (02)
  • [15] Reduced models of turbulent transport in helical plasmas including effects of zonal flows and trapped electrons
    Toda, S.
    Nunami, M.
    Sugama, H.
    JOURNAL OF PLASMA PHYSICS, 2020, 86 (03)
  • [16] METHES: A Monte Carlo collision code for the simulation of electron transport in low temperature plasmas
    Rabie, M.
    Franck, C. M.
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 203 : 268 - 277
  • [17] Gyrokinetic study of multiple electrostatic and electromagnetic electron-temperature-gradient modes and relevant transport in tokamak finite βe plasmas
    Zhang, X. R.
    Jian, X.
    Dong, J. Q.
    Wang, Z. X.
    Zou, Y. P.
    Xu, S.
    Li, J.
    Li, Y. Y.
    Zheng, S.
    Luan, Q. B.
    Han, M. K.
    Ma, R. R.
    Shen, Y.
    Chen, W.
    NUCLEAR FUSION, 2025, 65 (04)
  • [18] DENSITY AND TEMPERATURE PROFILES WITHIN LASER-PRODUCED PLASMAS IN THE CLASSICAL-TRANSPORT REGIME
    BURKHALTER, PG
    HERBST, MJ
    DUSTON, D
    GARDNER, J
    EMERY, M
    WHITLOCK, RR
    GRUN, J
    APRUZESE, JP
    DAVIS, J
    PHYSICS OF FLUIDS, 1983, 26 (12) : 3650 - 3659
  • [19] Integrated transport code system for the calculation of multi-component, high-β plasmas in the gas dynamic trap
    Anikeev, Andrey V.
    Karpushov, Alexander N.
    Collatz, Siegwart
    Noack, Klaus
    Otto, Gerlind
    Strogalova, Svetlana L.
    Fusion Technology, 2001, 39 (1 T): : 183 - 186
  • [20] Simulation studies on temperature profile stiffness in ITG turbulent transport of helical plasmas for flux-matching technique
    Nunami, Masanori
    Nakata, Motoki
    Toda, Shinichiro
    Ishizawa, Akihiro
    Kanno, Ryutaro
    Sugama, Hideo
    PHYSICS OF PLASMAS, 2018, 25 (08)