Computing equilibria of semi-algebraic economies using triangular decomposition and real solution classification

被引:11
|
作者
Li, Xiaoliang [1 ]
Wang, Dongming [2 ,3 ]
机构
[1] Dongguan Univ Technol, Sch Comp Sci, Dongguan 523808, Guangdong, Peoples R China
[2] Univ Paris 06, CNRS, Lab Informat Paris 6, F-75252 Paris 05, France
[3] Beihang Univ, LMIB, SKLSDE, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Equilibrium; Semi-algebraic economy; Semi-algebraic system; Triangular decomposition; Real solution classification; POLYNOMIAL SYSTEMS; FINITE-FIELDS; SIMPLE SETS; ALGORITHM; EQUATIONS;
D O I
10.1016/j.jmateco.2014.08.007
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we are concerned with the problem of determining the existence of multiple equilibria in economic models. We propose a general and complete approach for identifying multiplicities of equilibria in semi-algebraic economies, which may be expressed as semi-algebraic systems. The approach is based on triangular decomposition and real solution classification, two powerful tools of algebraic computation. Its effectiveness is illustrated by three examples of application. (C) 2014 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:48 / 58
页数:11
相关论文
共 50 条
  • [21] Computing the First Betti Number of a Semi-Algebraic Set
    Saugata Basu
    Richard Pollack
    Marie-Françoise Roy
    Foundations of Computational Mathematics, 2008, 8 : 97 - 136
  • [22] Computing Cylindrical Algebraic Decomposition via Triangular Decomposition
    Chen, Changbo
    Maza, Marc Moreno
    Xia, Bican
    Yang, Lu
    ISSAC2009: PROCEEDINGS OF THE 2009 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2009, : 95 - 102
  • [23] Semi-algebraic decision complexity, the real spectrum, and degree
    Lickteig, T
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1996, 110 (02) : 131 - 184
  • [24] Real Root Finding for Equivariant Semi-algebraic Systems
    Riener, Cordian
    El Din, Mohab Safey
    ISSAC'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, 2018, : 335 - 342
  • [25] Logarithmic limit sets of real semi-algebraic sets
    Alessandrini, Daniele
    ADVANCES IN GEOMETRY, 2013, 13 (01) : 155 - 190
  • [26] An algorithm for isolating the real solutions of semi-algebraic systems
    Xia, BC
    Yang, L
    JOURNAL OF SYMBOLIC COMPUTATION, 2002, 34 (05) : 461 - 477
  • [27] Computing with Tarski formulas and semi-algebraic sets in a web browser
    Kovacs, Zoltan
    Brown, Christopher
    Recio, Tomas
    Vajda, Robert
    JOURNAL OF SYMBOLIC COMPUTATION, 2024, 120
  • [28] P-ADIC SEMI-ALGEBRAIC SETS AND CELL DECOMPOSITION
    DENEF, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1986, 369 : 154 - 166
  • [29] Computing with semi-algebraic sets: Relaxation techniques and effective boundaries
    Chen, Changbo
    Davenport, James H.
    Maza, Marc Moreno
    Xia, Bican
    Xiao, Rong
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 52 : 72 - 96
  • [30] POSITIVSTELLENSATZ FOR SEMI-ALGEBRAIC SETS IN REAL CLOSED VALUED FIELDS
    Lavi, Noa
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (10) : 4479 - 4484