On the efficient computation of high-order derivatives for implicitly defined functions

被引:31
|
作者
Wagner, Mathias [1 ,2 ]
Walther, Andrea [3 ]
Schaefer, Bernd-Jochen [4 ]
机构
[1] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany
[3] Univ Gesamthsch Paderborn, Inst Math, D-33098 Paderborn, Germany
[4] Karl Franzens Univ Graz, Inst Phys, A-8010 Graz, Austria
关键词
Algorithmic differentiation; Numerical differentiation; Taylor expansion; Quantum chromodynamics; AUTOMATIC DIFFERENTIATION; QCD; ALGORITHMS;
D O I
10.1016/j.cpc.2009.12.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Scientific studies often require the precise calculation of derivatives. In many cases an analytical calculation is not feasible and one resorts to evaluating derivatives numerically. These are error-prone, especially for higher-order derivatives. A technique based on algorithmic differentiation is presented which allows for a precise calculation of higher-order derivatives. The method can be widely applied even for the case of only numerically solvable, implicit dependencies which totally hamper a semi-analytical calculation of the derivatives. As a demonstration the method is applied to a quantum field theoretical physical model. The results are compared with standard numerical derivative methods. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:756 / 764
页数:9
相关论文
共 50 条
  • [21] Parallel Algorithms for Efficient Computation of High-Order Line Graphs of Hypergraphs
    Liu, Xu T.
    Firoz, Jesun
    Lumsdaine, Andrew
    Joslyn, Cliff
    2021 IEEE 28TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA, AND ANALYTICS (HIPC 2021), 2021, : 312 - 321
  • [22] MultiZ: A Library for Computation of High-order Derivatives Using Multicomplex or Multidual Numbers
    Aguirre-Mesa, Andres M.
    Garcia, Manuel J.
    Millwater, Harry
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2020, 46 (03):
  • [23] Efficient approximation of implicitly defined functions:: General theorems and classical benchmark studies
    Jerome, Joseph W.
    Linner, Anders
    JOURNAL OF APPROXIMATION THEORY, 2007, 145 (01) : 81 - 99
  • [24] Implicitly defined high-order operator splittings for parabolic and hyperbolic variable-coefficient PDE using modified moments
    Lambers, James V.
    WORLD CONGRESS ON ENGINEERING 2008, VOLS I-II, 2008, : 822 - 827
  • [25] A HIGH-ORDER METHOD FOR EVALUATING DERIVATIVES OF HARMONIC FUNCTIONS IN PLANAR DOMAINS
    Ovall, Jeffrey S.
    Reynolds, Samuel E.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (03): : A1915 - A1935
  • [26] An approximation method for high-order fractional derivatives of algebraically singular functions
    Hasegawa, Takemitsu
    Sugiura, Hiroshi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 930 - 937
  • [27] Efficient representation and P-value computation for high-order Markov motifs
    da Fonseca, Paulo G. S.
    Gautier, Christian
    Guimaraes, Katia S.
    Sagot, Marie-France
    BIOINFORMATICS, 2008, 24 (16) : I160 - I166
  • [28] High-order nonreflecting boundary conditions without high-order derivatives
    Givoli, D
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 170 (02) : 849 - 870
  • [29] Efficient computation of a guaranteed stability domain for a high-order parameter dependent plant
    Roos, Clement
    Biannic, Jean-Marc
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 3895 - 3900
  • [30] A HIGH ORDER METHOD FOR THE APPROXIMATION OF INTEGRALS OVER IMPLICITLY DEFINED HYPERSURFACES
    Drescher, Lukas
    Heumann, Holger
    Schmidt, Kersten
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (06) : 2592 - 2615