Sparse-random-matrix configurations for two or three interacting electrons in a random potential

被引:1
|
作者
Xiong, SJ
Evangelou, SN
机构
[1] NANJING UNIV,DEPT PHYS,NANJING 210008,PEOPLES R CHINA
[2] UNIV IOANNINA,DEPT PHYS,GR-45110 IOANNINA,GREECE
来源
PHYSICAL REVIEW B | 1997年 / 56卷 / 21期
关键词
D O I
10.1103/PhysRevB.56.13623
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the random-matrix configurations for two or three interacting electrons in one-dimensional disordered systems. In a suitable noninteracting localized electron basis we obtain a sparse random matrix with very long tails which is different from the superimposed random-band-matrix description usually thought to be valid. The number of nonzero off-diagonal matrix elements decays very weakly from the matrix diagonal and their distribution is a Lorentzian having long tails. The corresponding random matrix for three interacting electrons is similar but even more sparse.
引用
收藏
页码:13623 / 13626
页数:4
相关论文
共 50 条
  • [31] Two-dimensional interacting Bose–Bose droplet in random repulsive potential
    Saswata Sahu
    Dwipesh Majumder
    The European Physical Journal Plus, 137
  • [32] Quantum diffusion of interacting particles in a random potential
    Halfpap, O
    Kawarabayashi, T
    Kramer, B
    ANNALEN DER PHYSIK, 1998, 7 (5-6) : 483 - 492
  • [33] Quantum diffusion of interacting particles in a random potential
    Universitaet Hamburg, Hamburg, Germany
    Ann Phys Leipzig, 5-6 (483-492):
  • [34] The ionization potential of atomic configurations with two electrons
    Finkelstein, B. N.
    ZEITSCHRIFT FUR PHYSIK, 1930, 61 (3-4): : 234 - 235
  • [35] DIFFUSION OF A REPTATING POLYMER INTERACTING WITH A RANDOM-MATRIX
    LUMPKIN, O
    PHYSICAL REVIEW E, 1993, 48 (03) : 1910 - 1915
  • [36] A random continuous model for two interacting populations
    Manthey, R
    Maslowski, B
    APPLIED MATHEMATICS AND OPTIMIZATION, 2002, 45 (02): : 213 - 236
  • [37] A Random Continuous Model for Two Interacting Populations
    R. Manthey
    B. Maslowski
    Applied Mathematics & Optimization, 2002, 45 : 213 - 236
  • [38] Localized to extended states transition for two interacting particles in a two-dimensional random potential
    Ortuño, M
    Cuevas, E
    EUROPHYSICS LETTERS, 1999, 46 (02): : 224 - 230
  • [39] Design of random and sparse metalens with matrix pencil method
    Li, Mengmeng
    Li, Shuaishuai
    Yu, Yefeng
    Ni, Xingjie
    Chen, Rushan
    OPTICS EXPRESS, 2018, 26 (19): : 24702 - 24711
  • [40] Uniform Random Number Generation by Using Sparse Matrix
    Muramatsu, Jun
    Miyake, Shigeki
    2012 IEEE INFORMATION THEORY WORKSHOP (ITW), 2012, : 607 - 611