Consequences of Mixotrophy on Cell Energetic Metabolism in Microchloropsis gaditana Revealed by Genetic Engineering and Metabolic Approaches

被引:5
|
作者
Bo, Davide Dal [1 ]
Magneschi, Leonardo [1 ,3 ]
Bedhomme, Mariette [1 ]
Billey, Elodie [1 ,2 ]
Deragon, Etienne [1 ]
Storti, Mattia [1 ]
Menneteau, Mathilde [1 ]
Richard, Christelle [1 ]
Rak, Camille [1 ]
Lapeyre, Morgane [1 ]
Lembrouk, Mehdi [1 ]
Conte, Melissa [1 ]
Gros, Valerie [1 ]
Tourcier, Guillaume [1 ]
Giustini, Cecile [1 ]
Falconet, Denis [1 ]
Curien, Gilles [1 ]
Allorent, Guillaume [1 ]
Petroutsos, Dimitris [1 ]
Laeuffer, Frederic [2 ]
Fourage, Laurent [2 ]
Jouhet, Juliette [1 ]
Marechal, Eric [1 ]
Finazzi, Giovanni [1 ]
Collin, Severine [1 ,2 ]
机构
[1] Univ Grenoble Alpes UGA, Interdisciplinary Res Inst Grenoble,Alimentat,Env, IRIG Lab Physiol Cellulaire & Vegetale,Inst Natl, CNRS,Commissariat Energie Atom,Energies Alternat, Grenoble, France
[2] Total Refining Chem, Tour Coupole, Paris La Defens, France
[3] Ingenza Ltd, Roslin Innovat Ctr, Roslin, Midlothian, Scotland
来源
基金
欧洲研究理事会;
关键词
Microchloropsis gaditana; mixotrophy; photosynthesis; mitochondrial alternative oxidase; TALE nuclease; lipid metabolism; OLEAGINOUS MICROALGAE NANNOCHLOROPSIS; ORGANIC-CARBON SOURCES; FATTY-ACID-COMPOSITION; CYCLIC ELECTRON FLOW; WATER-WATER CYCLE; EICOSAPENTAENOIC ACID; CHLORELLA-VULGARIS; CHLAMYDOMONAS-REINHARDTII; GROWTH; PHOTOSYNTHESIS;
D O I
10.3389/fpls.2021.628684
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Algae belonging to the Microchloropsis genus are promising organisms for biotech purposes, being able to accumulate large amounts of lipid reserves. These organisms adapt to different trophic conditions, thriving in strict photoautotrophic conditions, as well as in the concomitant presence of light plus reduced external carbon as energy sources (mixotrophy). In this work, we investigated the mixotrophic responses of Microchloropsis gaditana (formerly Nannochloropsis gaditana). Using the Biolog growth test, in which cells are loaded into multiwell plates coated with different organic compounds, we could not find a suitable substrate for Microchloropsis mixotrophy. By contrast, addition of the Lysogeny broth (LB) to the inorganic growth medium had a benefit on growth, enhancing respiratory activity at the expense of photosynthetic performances. To further dissect the role of respiration in Microchloropsis mixotrophy, we focused on the mitochondrial alternative oxidase (AOX), a protein involved in energy management in other algae prospering in mixotrophy. Knocking-out the AOX1 gene by transcription activator-like effector nuclease (TALE-N) led to the loss of capacity to implement growth upon addition of LB supporting the hypothesis that the effect of this medium was related to a provision of reduced carbon. We conclude that mixotrophic growth in Microchloropsis is dominated by respiratory rather than by photosynthetic energetic metabolism and discuss the possible reasons for this behavior in relationship with fatty acid breakdown via beta-oxidation in this oleaginous alga.
引用
收藏
页数:13
相关论文
共 34 条
  • [31] A review of genetic epidemiology of head and neck cancer related to polymorphisms in metabolic genes, cell cycle control and alcohol metabolism
    Cadoni, G.
    Boccia, S.
    Petrelli, L.
    Di Giannantonio, P.
    Arzani, D.
    Giorgio, A.
    De Feo, E.
    Pandolfini, M.
    Galli, P.
    Paludetti, G.
    Ricciardi, G.
    ACTA OTORHINOLARYNGOLOGICA ITALICA, 2012, 32 (01) : 1 - 11
  • [32] Elucidation of the co-metabolism of glycerol and glucose in Escherichia coli by genetic engineering, transcription profiling, and 13C metabolic flux analysis
    Yao, Ruilian
    Xiong, Dewang
    Hu, Hongbo
    Wakayama, Masataka
    Yu, Wenjuan
    Zhang, Xuehong
    Shimizu, Kazuyuki
    BIOTECHNOLOGY FOR BIOFUELS, 2016, 9
  • [33] Elucidation of the co-metabolism of glycerol and glucose in Escherichia coli by genetic engineering, transcription profiling, and 13C metabolic flux analysis
    Ruilian Yao
    Dewang Xiong
    Hongbo Hu
    Masataka Wakayama
    Wenjuan Yu
    Xuehong Zhang
    Kazuyuki Shimizu
    Biotechnology for Biofuels, 9
  • [34] Cell type-specific control and post-translational regulation of specialized metabolism: opening new avenues for plant metabolic engineering
    Ntelkis, Nikolaos
    Goossens, Alain
    Sola, Kresimir
    CURRENT OPINION IN PLANT BIOLOGY, 2024, 81