Robust Estimates of Covariance Matrices in the Large Dimensional Regime

被引:45
|
作者
Couillet, Romain [1 ]
Pascal, Frederic [2 ]
Silverstein, Jack W. [3 ]
机构
[1] Supelec, Dept Telecommun, F-91190 Gif Sur Yvette, France
[2] Supelec, SONDRA Lab, F-91190 Gif Sur Yvette, France
[3] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
基金
欧洲研究理事会;
关键词
Robust estimation; random matrix theory; MULTIVARIATE LOCATION; EIGENVALUES; DISTRIBUTIONS; PARAMETER; SCATTER; EIGENVECTORS;
D O I
10.1109/TIT.2014.2354045
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the limiting behavior of a class of robust population covariance matrix estimators, originally due to Maronna in 1976, in the regime where both the number of available samples and the population size grow large. Using tools from random matrix theory, we prove that, for sample vectors made of independent entries having some moment conditions, the difference between the sample covariance matrix and (a scaled version of) such robust estimator tends to zero in spectral norm, almost surely. This result can be applied to various statistical methods arising from random matrix theory that can be made robust without altering their first order behavior.
引用
收藏
页码:7269 / 7278
页数:10
相关论文
共 50 条
  • [1] ROBUST COVARIANCE ESTIMATION AND LINEAR SHRINKAGE IN THE LARGE DIMENSIONAL REGIME
    Couillet, Romain
    McKay, Matthew
    [J]. 2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2014,
  • [2] Estimation of Toeplitz Covariance Matrices in Large Dimensional Regime With Application to Source Detection
    Vinogradova, Julia
    Couillet, Romain
    Hachem, Walid
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (18) : 4903 - 4913
  • [3] ON THE EIGENVECTORS OF LARGE DIMENSIONAL SAMPLE COVARIANCE MATRICES
    SILVERSTEIN, JW
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 30 (01) : 1 - 16
  • [4] Trimmed estimators for large dimensional sparse covariance matrices
    Yang, Guangren
    Cui, Xia
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2019, 8 (01)
  • [5] OPTIMAL ESTIMATES FOR COVARIANCE MATRICES
    SHAIKIN, ME
    [J]. AUTOMATION AND REMOTE CONTROL, 1973, 34 (01) : 53 - 60
  • [6] A robust test for sphericity of high-dimensional covariance matrices
    Tian, Xintao
    Lu, Yuting
    Li, Weiming
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 141 : 217 - 227
  • [7] Robust estimation of high-dimensional covariance and precision matrices
    Avella-Medina, Marco
    Battey, Heather S.
    Fan, Jianqing
    Li, Quefeng
    [J]. BIOMETRIKA, 2018, 105 (02) : 271 - 284
  • [8] Robust Shrinkage Estimation of High-Dimensional Covariance Matrices
    Chen, Yilun
    Wiesel, Ami
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (09) : 4097 - 4107
  • [9] ROBUST SHRINKAGE M-ESTIMATORS OF LARGE COVARIANCE MATRICES
    Auguin, Nicolas
    Morales-Jimenez, David
    McKay, Matthew
    Couillet, Romain
    [J]. 2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [10] ROBUST ESTIMATION OF COVARIANCE MATRICES
    REYNOLDS, RG
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (09) : 1047 - 1051