Exploring s-e-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals

被引:18
|
作者
Wang, JinRong [1 ]
Deng, JianHua [1 ]
Feckan, Michal [2 ,3 ]
机构
[1] Guizhou Univ, Dept Math, Guiyang 550025, Guizhou, Peoples R China
[2] Comenius Univ, Dept Math Anal & Numer Math, Fac Math Phys & Informat, SK-84248 Bratislava, Slovakia
[3] Slovak Acad Sci, Math Inst, SK-81473 Bratislava, Slovakia
关键词
Ostrowski type inequalities; Hadamard fractional integrals; s-e-condition; CONVEX-FUNCTIONS; SPACES;
D O I
10.2478/s12175-014-0281-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new identity for Hadamard fractional integrals via differentiable mappings is established. A new concept named by s-e-condition is explored to overcome some essence difficulties from the singular kernels in Hadamard fractional integrals. With the help of the new concept s-e-condition and the obtained identity for Hadamard fractional integrals, some new Ostrowski type inequalities for Hadamard fractional integrals are obtained.
引用
收藏
页码:1381 / 1396
页数:16
相关论文
共 50 条
  • [41] ON HADAMARD TYPE INEQUALITIES FOR m-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS
    Farid, G.
    Rehman, A. Ur
    Tariq, B.
    Waheed, A.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2016, 7 (04): : 150 - 167
  • [42] Generalization of Hermite-Hadamard Type Inequalities via Conformable Fractional Integrals
    Khan, Muhammad Adil
    Khurshid, Yousaf
    Du, Ting-Song
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2018, 2018
  • [43] Hermite-Hadamard Type Inequalities for Superquadratic Functions via Fractional Integrals
    Li, Guangzhou
    Chen, Feixiang
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [44] FRACTIONAL INTEGRAL INEQUALITIES OF OSTROWSKI AND HADAMARD TYPE VIA k-ANALOGUES OF CAPUTO DERIVATIVES
    Liu, Yonghong
    Farid, Ghulam
    Alkhalifa, Loay
    Nazeer, Waqas
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,
  • [45] Generalized Riemann-Liouville k-Fractional Integrals Associated With Ostrowski Type Inequalities and Error Bounds of Hadamard Inequalities
    Kwun, Young Chel
    Farid, Ghulum
    Nazeer, Waqas
    Ullah, Sami
    Kang, Shin Min
    IEEE ACCESS, 2018, 6 : 64946 - 64953
  • [46] Hermite-Hadamard and Ostrowski type inequalities via α-exponential type convex functions with applications
    Bakht, Attazar
    Anwar, Matloob
    AIMS MATHEMATICS, 2024, 9 (04): : 9519 - 9535
  • [47] Some Hermite-Hadamard and Ostrowski type inequalities for fractional integral operators with exponential kernel
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    Usia, Fuat
    Yildirim, Huseyin
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2019, 23 (01): : 25 - 36
  • [48] Hermite–Hadamard type inequalities for conformable fractional integrals
    M. Adil Khan
    T. Ali
    S. S. Dragomir
    M. Z. Sarikaya
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 1033 - 1048
  • [49] HERMITE-HADAMARD TYPE INEQUALITIES FOR THE s-HH CONVEX FUNCTIONS VIA k-FRACTIONAL INTEGRALS AND APPLICATIONS
    Xu, Jianzhong
    Wang, Wen
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (01): : 291 - 303
  • [50] Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities
    Sarikaya, Mehmet Zeki
    Set, Erhan
    Yaldiz, Hatice
    Basak, Nagihan
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2403 - 2407