On compactness of set-valued measures (II)

被引:3
|
作者
Siggini, KK
机构
关键词
D O I
10.1016/S1631-073X(02)00027-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper completes the article by Siggini (C. R. Acad. Sci. Paris, Ser 1334 (2002) 949-952). We prove another criterion of compactness in the space of positive K-regular set-valued measures endowed with the s-topology. We deduce from this Topsoe's criterion for real nonnegative measures (Stud. Math. XXXVI (1970) 208). To cite this article: K.K. Siggini, C. R. Acad. Sci. Paris, Ser. I336 (2003). (C) 2003 Academie des sciences/Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:15 / 18
页数:4
相关论文
共 50 条
  • [31] ON PROJECTIVELY DEFINED POSITIVE SET-VALUED RADON MEASURES
    SIGGINI, KK
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (20): : 1009 - 1012
  • [32] Set-valued loss-based risk measures
    Sun, Fei
    Chen, Yanhong
    Hu, Yijun
    [J]. POSITIVITY, 2018, 22 (03) : 859 - 871
  • [33] Set-valued risk measures for conical market models
    Andreas H. Hamel
    Frank Heyde
    Birgit Rudloff
    [J]. Mathematics and Financial Economics, 2011, 5 : 1 - 28
  • [34] Set-valued dynamic risk measures for processes and for vectors
    Yanhong Chen
    Zachary Feinstein
    [J]. Finance and Stochastics, 2022, 26 : 505 - 533
  • [35] Elicitability and identifiability of set-valued measures of systemic risk
    Tobias Fissler
    Jana Hlavinová
    Birgit Rudloff
    [J]. Finance and Stochastics, 2021, 25 : 133 - 165
  • [36] RADON-NIKODYM THEOREMS FOR SET-VALUED MEASURES
    HIAI, F
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1978, 8 (01) : 96 - 118
  • [37] Entropy measures and granularity measures for interval and set-valued information systems
    Wang, Hong
    Yue, Hong-Bo
    [J]. SOFT COMPUTING, 2016, 20 (09) : 3489 - 3495
  • [38] Entropy measures and granularity measures for interval and set-valued information systems
    Hong Wang
    Hong-Bo Yue
    [J]. Soft Computing, 2016, 20 : 3489 - 3495
  • [39] Characterizations of the nonemptiness and compactness for solution sets of convex set-valued optimization problems
    X. X. Huang
    J. C. Yao
    [J]. Journal of Global Optimization, 2013, 55 : 611 - 626
  • [40] Connectedness and Compactness of Weak Efficient Solutions for Set-Valued Vector Equilibrium Problems
    Bin Chen
    Xun-Hua Gong
    Shu-Min Yuan
    [J]. Journal of Inequalities and Applications, 2008