DIRECT OBSERVATION OF A SHARP TRANSITION TO COHERENCE IN DENSE CORES

被引:150
|
作者
Pineda, Jaime E. [1 ]
Goodman, Alyssa A. [1 ]
Arce, Hector G. [2 ]
Caselli, Paola [3 ]
Foster, Jonathan B. [1 ]
Myers, Philip C. [1 ]
Rosolowsky, Erik W. [4 ]
机构
[1] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[2] Yale Univ, Dept Astron, New Haven, CT 06520 USA
[3] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[4] Univ British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
ISM: clouds; ISM: individual objects (B5; Perseus Molecular Complex); ISM: molecules; stars: formation; STAR-FORMING REGIONS; DUST EXTINCTION; DARK CLOUDS; PERSEUS; EMISSION; COLLAPSE; QUIESCENT; TURBULENCE; CARBON; SCALE;
D O I
10.1088/2041-8205/712/1/L116
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present NH3 observations of the B5 region in Perseus obtained with the Green Bank Telescope. The map covers a region large enough (similar to 11' x 14') that it contains the entire dense core observed in previous dust continuum surveys. The dense gas traced by NH3(1,1) covers a much larger area than the dust continuum features found in bolometer observations. The velocity dispersion in the central region of the core is small, presenting subsonic non-thermal motions which are independent of scale. However, it is because of the coverage and high sensitivity of the observations that we present the detection, for the first time, of the transition between the coherent core and the dense but more turbulent gas surrounding it. This transition is sharp, increasing the velocity dispersion by a factor of 2 in less than 0.04 pc (the 31 '' beam size at the distance of Perseus, similar to 250 pc). The change in velocity dispersion at the transition is approximate to 3 km s(-1) pc(-1). The existence of the transition provides a natural definition of dense core: the region with nearly constant subsonic non-thermal velocity dispersion. From the analysis presented here, we can neither confirm nor rule out a corresponding sharp density transition.
引用
收藏
页码:L116 / L121
页数:6
相关论文
共 50 条
  • [21] Activated bond-breaking processes preempt the observation of a sharp glass-glass transition in dense short-ranged attractive colloids
    Zaccarelli, E
    Foffi, G
    Sciortino, F
    Tartaglia, P
    PHYSICAL REVIEW LETTERS, 2003, 91 (10)
  • [22] Direct Observation of the Time Evolution of a Biomolecular Transition
    Mack, Andrew H.
    Schlingman, Daniel
    Kamenetska, Masha
    Birger, Maxwell
    Regan, Lynne
    Mochrie, Simon
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 391A - 391A
  • [23] The direct observation of electronic coherence in electron transfer reactions possible?
    Lucke, A
    Mak, CH
    Egger, R
    Ankerhold, J
    Stockburger, J
    Grabert, H
    JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (20): : 8397 - 8408
  • [24] Direct observation of quantum coherence in single-molecule magnets
    Schlegel, C.
    van Slageren, J.
    Manoli, M.
    Brechin, E. K.
    Dressel, M.
    PHYSICAL REVIEW LETTERS, 2008, 101 (14)
  • [25] Observation of atomic coherence in intercombination transition line of strontium atom
    Chang, H. (changhong@ntsc.ac.cn), 1600, Chinese Optical Society (33):
  • [26] Embedded binaries and their dense cores
    Sadavoy, Sarah I.
    Stahler, Steven W.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 469 (04) : 3881 - 3900
  • [27] THE STRUCTURE OF DENSE CLOUD CORES
    WOOTTEN, A
    STRUCTURE AND DYNAMICS OF THE INTERSTELLAR MEDIUM, 1989, 350 : 210 - 214
  • [28] SEYFERTS WITHOUT DENSE CORES
    不详
    NATURE, 1970, 227 (5257) : 442 - +
  • [29] CORES OF DENSE EXCHANGE ECONOMIES
    NARENS, L
    MATHEMATICAL SOCIAL SCIENCES, 1992, 24 (2-3) : 277 - 292
  • [30] The evolution of massive dense cores
    Thomas, H. S.
    Fuller, G. A.
    ASTROPHYSICAL JOURNAL, 2007, 659 (02): : L165 - L168