Vector fields in R2 with maximal index

被引:0
|
作者
Nabarro, A. C. [1 ]
Ruas, M. A. S. [1 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1093/qmath/hal017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the method of Poincare to investigate the local index of vector fields in the plane. If m is the degree of the first non-zero jet, X, of the vector field X at an isolated zero, we explore the geometry of the pencil generated by the coordinate functions of X when the absolute value of the index of X, vertical bar ind(X)vertical bar, is m. We also find necessary and sufficient conditions for vertical bar ind(X)vertical bar to be m.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [31] Weighted estimates for maximal functions associated with finite type curves in R2
    Manna, Ramesh
    Shrivastava, Saurabh
    Shuin, Kalachand
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 205
  • [32] Maximal masses of white dwarfs for polytropes in R2 gravity and theoretical constraints
    Astashenok, A., V
    Odintsov, S. D.
    Oikonomou, V. K.
    [J]. PHYSICAL REVIEW D, 2022, 106 (12)
  • [33] R2
    ROLL, R
    [J]. JOURNAL OF FINANCE, 1988, 43 (03): : 541 - 566
  • [34] Bootstrapping R2 and adjusted R2 in regression analysis
    Ohtani, K
    [J]. ECONOMIC MODELLING, 2000, 17 (04) : 473 - 483
  • [35] Injectivity of differentiable maps R2 → R2 at infinity
    Gutierrez, Carlos
    Rabanal, Roland
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2006, 37 (02): : 217 - 239
  • [36] ON THE CAPACITY FUNCTIONAL OF EXCURSION SETS OF GAUSSIAN RANDOM FIELDS ON R2
    Kratz, Marie
    Nagel, Werner
    [J]. ADVANCES IN APPLIED PROBABILITY, 2016, 48 (03) : 712 - 725
  • [37] MARKOV PROPERTIES IN THE HIDA SENSE AND GOURSAT REPRESENTATIONS FOR INDEX PROCESS IN R OR R2
    GUYON, X
    PRUM, B
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1979, 288 (17): : 839 - 842
  • [38] EXISTENCE AND MAXIMAL REGULARITY OF SOLUTIONS IN L2(R2) FOR A HYPERBOLIC TYPE DIFFERENTIAL
    Muratbekov, M. B.
    Bayandiyev, Ye N.
    [J]. EURASIAN MATHEMATICAL JOURNAL, 2020, 11 (01): : 95 - 100
  • [39] Quantum Deformation of the Non-Polynomial Interaction V(r) = r2 + lambda r2/(1 + g r2)
    Nag, N.
    Sinha, A.
    Roychoudhury, R.
    [J]. Zeitschrift fuer Naturforschung. Section A: Physical Sciences, 52 (03):
  • [40] Maximal subalgebras of vector fields for equivariant quantizations
    Boniver, F
    Mathonet, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (02) : 582 - 589