Mechanistic Role of Li+ Dissociation Level in Aprotic Li-O2 Battery

被引:115
|
作者
Sharon, Daniel [1 ]
Hirsberg, Daniel [1 ]
Salama, Michael [1 ]
Afri, Michal [1 ]
Frimer, Aryeh A. [1 ]
Noked, Malachi [2 ,3 ]
Kwak, Wonjin [4 ]
Sun, Yang-Kook [4 ]
Aurbach, Doron [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel
[2] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[3] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[4] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
基金
以色列科学基金会;
关键词
Li-O-2; batteries; lithium salts; EQCM; glyme solvents; ionic association; OXYGEN REDUCTION; DIMETHYL-SULFOXIDE; DISCHARGE CAPACITY; LITHIUM; BEHAVIOR; ELECTROLYTES; INSTABILITY; SOLVATION; STABILITY; EVOLUTION;
D O I
10.1021/acsami.5b11483
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The kinetics and thermodynamics of oxygen reduction reactions (ORR) in aprotic Li electrolyte were shown to be highly dependent on the surrounding chemical environment and electrochemical conditions. Numerous reports have demonstrated the importance of high donor number (DN) solvents for enhanced ORR, and attributed this phenomenon to the stabilizing interactions between the reduced oxygen species and the solvent molecules. We focus herein on the often overlooked effect of the Li salt used in the electrolyte solution. We show that the level of dissociation of the salt used plays a significant role in the ORR, even as important as the effect of the solvent DN. We clearly show that the salt used dictates the kinetics and thermodynamic of the ORR, and also enables control of the reduced Li2O2 morphology. By optimizing the salt composition, we have managed to demonstrate a superior ORR behavior in diglyme solutions, even when compared to the high DN DMSO solutions. Our work paves the way for optimization of various solvents with reasonable anodic and cathodic stabilities, which have so far been overlooked due to their relatively low DN.
引用
收藏
页码:5300 / 5307
页数:8
相关论文
共 50 条
  • [31] Intermittent operation of the aprotic Li-O2 battery: the mass recovery process upon discharge interval
    Zhu, Ding
    Zhang, Lei
    Song, Ming
    Wang, Xiaofei
    Mi, Rui
    Liu, Hao
    Mei, Jun
    Lau, Leo W. M.
    Chen, Yungui
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (09) : 2539 - 2544
  • [32] Polyelemental Nanoparticles as Catalysts for a Li-O2 Battery
    Jung, Woo-Bin
    Park, Hyunsoo
    Jang, Ji-Soo
    Kim, Do Youb
    Kim, Dong Wook
    Lim, Eunsoo
    Kim, Ju Ye
    Choi, Sungho
    Suk, Jungdon
    Kang, Yongku
    Kim, Il-Doo
    Kim, Jihan
    Wu, Mihye
    Jung, Hee-Tae
    ACS NANO, 2021, 15 (03) : 4235 - 4244
  • [33] Degradation and revival of Li-O2 battery cathode
    Shui, Jiang-Lan
    Wang, Hsien-Hau
    Liu, Di-Jia
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 : 45 - 47
  • [34] The effects of moisture contamination in the Li-O2 battery
    Cho, M. H.
    Trottier, J.
    Gagnon, C.
    Hovington, P.
    Clement, D.
    Vijh, A.
    Kim, C. -S.
    Guerfi, A.
    Black, R.
    Nazar, L.
    Zaghib, K.
    JOURNAL OF POWER SOURCES, 2014, 268 : 565 - 574
  • [35] Homogeneous nucleation of Li2O2 under Li-O2 battery discharge
    Zakharchenko, Tatiana K.
    Sergeev, Artem V.
    D. Bashkirov, Alexander
    Neklyudova, Polina
    Cervellino, Antonio
    Itkis, Daniil M.
    Yashina, Lada V.
    NANOSCALE, 2020, 12 (07) : 4591 - 4601
  • [36] Mechanistic insights for the development of Li-O2 battery materials: addressing Li2O2 conductivity limitations and electrolyte and cathode instabilities
    McCloskey, Bryan D.
    Burke, Colin M.
    Nichols, Jessica E.
    Renfrew, Sara E.
    CHEMICAL COMMUNICATIONS, 2015, 51 (64) : 12701 - 12715
  • [37] A stable cathode for the aprotic Li–O2 battery
    Muhammed M. Ottakam Thotiyl
    Stefan A. Freunberger
    Zhangquan Peng
    Yuhui Chen
    Zheng Liu
    Peter G. Bruce
    Nature Materials, 2013, 12 : 1050 - 1056
  • [38] Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries
    Lyu, Zhiyang
    Zhou, Yin
    Dai, Wenrui
    Cui, Xinhang
    Lai, Min
    Wang, Li
    Huo, Fengwei
    Huang, Wei
    Hu, Zheng
    Chen, Wei
    CHEMICAL SOCIETY REVIEWS, 2017, 46 (19) : 6046 - 6072
  • [39] Li-O2 Battery Degradation by Lithium Peroxide (Li2O2): A Model Study
    Younesi, Reza
    Hahlin, Maria
    Bjorefors, Fredrik
    Johansson, Patrik
    Edstrom, Kristina
    CHEMISTRY OF MATERIALS, 2013, 25 (01) : 77 - 84
  • [40] Role of Superoxide and Singlet Oxygen on the Oxygen Reduction Pathways in Li-O2 Cathodes at Different Li+ Ion Concentration
    Tesio, Alvaro Y.
    Torres, Walter
    Villalba, Matias
    Davia, Federico
    del Pozo, Maria
    Cordoba, Daniel
    Williams, Federico J.
    Calvo, Ernesto J.
    CHEMELECTROCHEM, 2022, 9 (24):