Stimuli-Responsive Hydrogels Based on Random Copolymers of the Sucrose Methacrylate

被引:1
|
作者
de Oliveira Gouvea, Ricardo Santiago [1 ]
Felisberti, Maria Isabel [1 ]
机构
[1] Univ Estadual Campinas, Inst Chem, POB 6154, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
acrylic acid; diethylene glycol methyl ether methacrylate; hydrogel; pH-responsive; sucrose methacrylate; thermoresponsive; DIFFERENTIAL SCANNING CALORIMETRY; CROSS-LINKING; N-ISOPROPYLACRYLAMIDE; THERMAL-DEGRADATION; POLY(ACRYLIC ACID); BEHAVIOR; PH; POLYMERS; RAMAN; WATER;
D O I
10.1002/mame.202100378
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Poly(sucrose methacrylate-co-acrylic acid), P(SMA-co-AA), and poly(sucrose methacrylate-co-diethylene glycol methyl ether methacrylate), P(SMA-co-EG(2)MA), are synthesized by free radical polymerization using sucrose dimethacrylate as a crosslinker. The copolymers present one glass transition suggesting a random distribution of the comonomers. The copolymers-water interaction parameter chi is around 0.5, while M-c increases with SMA molar fraction. The kinetics of water swelling show a Fickian behavior for P(SMA-co-AA) richer in acrylic acid. The swelling is driven by the ionic character of the P(SMA-co-AA), except at pH = 2, and by the hydrophilicity of the SMA for the P(SMA-co-EG(2)MA). The temperature influences the swelling behavior of the P(SMA-co-EG(2)MA) due to the lower critical solution temperature (LCST) behavior. The pH- and thermoresponsiveness of the P(SMA-co-AA) and P(SMA-co-EG(2)MA) hydrogels are maintained by replacing the sensitive comonomers with SMA up to mass fractions of 85 and 20 wt%, respectively, approximate to 71 and 17 wt% of sucrose, a product from a renewable resource. The hydrolytic degradation of the hydrogels is more pronounced for copolymers richer in SMA and resulted in sucrose release. Hydrogels present viscoelastic behavior, and the P(SMA-co-AA) series is more resistant to compression. The xerogels of the copolymers richer in SMA show a foam-like morphology with open cells.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Measurement of the stiffening parameter for stimuli-responsive hydrogels
    Benjamin, C. C.
    Lakes, R. S.
    Crone, W. C.
    ACTA MECHANICA, 2018, 229 (09) : 3715 - 3725
  • [32] Functional Stimuli-Responsive Gels: Hydrogels and Microgels
    Echeverria, Coro
    Fernandes, Susete N.
    Godinho, Maria H.
    Borges, Joao Paulo
    Soares, Paula I. P.
    GELS, 2018, 4 (02)
  • [33] Stimuli-responsive peptide hydrogels for biomedical applications
    Zhou, Haoran
    Zhu, Yanhua
    Yang, Bingbing
    Huo, Yehong
    Yin, Yuanyuan
    Jiang, Xuemei
    Ji, Wei
    JOURNAL OF MATERIALS CHEMISTRY B, 2024, 12 (07) : 1748 - 1774
  • [34] Numerical modeling of heterogeneous stimuli-responsive hydrogels
    Rahmat, Amin
    Altunkeyik, Berk
    Shadloo, Mostafa Safdari
    Montenegro-Johnson, Tom
    PHYSICAL REVIEW E, 2024, 110 (05)
  • [35] Stimuli-Responsive Nanocomposite Hydrogels for Oral Diseases
    Conte, Raffaele
    Valentino, Anna
    Romano, Silvia
    Margarucci, Sabrina
    Petillo, Orsolina
    Calarco, Anna
    GELS, 2024, 10 (07)
  • [36] Stimuli-Responsive Nanocomposite Hydrogels for Biomedical Applications
    Lavrador, Pedro
    Esteves, Marco R.
    Gaspar, Vitor M.
    Mano, Joao F.
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (08)
  • [37] Stimuli-responsive hydrogels for intratumoral drug delivery
    Marques, Ana C.
    Costa, Paulo J.
    Velho, Sergia
    Amaral, Maria H.
    DRUG DISCOVERY TODAY, 2021, 26 (10) : 2397 - 2405
  • [38] Measurement of the stiffening parameter for stimuli-responsive hydrogels
    C. C. Benjamin
    R. S. Lakes
    W. C. Crone
    Acta Mechanica, 2018, 229 : 3715 - 3725
  • [39] Stimuli-Responsive Hydrogels Using Biomolecular Functions
    Matsumoto, Kazuya
    Miyata, Takashi
    KOBUNSHI RONBUNSHU, 2014, 71 (04) : 125 - 142
  • [40] Stimuli-responsive hydrogels: Fabrication and biomedical applications
    Li, Ziyuan
    Zhou, Yanzi
    Li, Tianyue
    Zhang, Junji
    Tian, He
    VIEW, 2022, 3 (02)