共 49 条
- [42] Topological strings on singular elliptic Calabi-Yau 3-folds and minimal 6d SCFTs JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
- [43] Topological strings on singular elliptic Calabi-Yau 3-folds and minimal 6d SCFTs Journal of High Energy Physics, 2018
- [44] 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document} Calabi-Yau 3-folds, Calabi-Yau 3-folds as double covers, and F-theory with U(1)s Journal of High Energy Physics, 2020 (2)
- [45] On the adjunction formula for 3-folds in characteristic p>5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>5$$\end{document} Mathematische Zeitschrift, 2016, 284 (1-2) : 255 - 269
- [46] On the abundance problem for 3-folds in characteristic p>5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>5$$\end{document} Mathematische Zeitschrift, 2019, 292 (3-4) : 937 - 946
- [47] SU(2)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU(2)^2$$\end{document}-Invariant Gauge Theory on Asymptotically Conical Calabi–Yau 3-Folds The Journal of Geometric Analysis, 2023, 33 (4):
- [48] A type of the Lefschetz hyperplane section theorem on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Q}\,}$$\end{document} -Fano 3-folds with Picard number one and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{1}{2}(1,1,1)}$$\end{document} -singularities Geometriae Dedicata, 2012, 159 (1) : 41 - 49
- [49] On classification of polarized 3-folds (X,L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,L)$$\end{document} with h0(KX+2L)=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h^{0}(K_{X}+2L)=2$$\end{document} Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2014, 55 (1): : 77 - 103