High-m kink/tearing modes in cylindrical geometry

被引:7
|
作者
Connor, J. W. [1 ,2 ,3 ]
Hastie, R. J. [1 ,2 ]
Pusztai, I. [4 ,5 ]
Catto, P. J. [2 ,4 ]
Barnes, M. [1 ,2 ,6 ]
机构
[1] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
[3] Univ London Imperial Coll Sci Technol & Med, London SW7 2BW, England
[4] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[5] Chalmers, SE-41296 Gothenburg, Sweden
[6] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
基金
英国工程与自然科学研究理事会;
关键词
tearing mode; radially global; magnetohydrodynamic stability; gyrokinetic simulation; HYDROMAGNETIC-STABILITY; TEARING MODES; INSTABILITIES; PLASMAS; TOKAMAK; PINCH;
D O I
10.1088/0741-3335/56/12/125006
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The global ideal kink equation, for cylindrical geometry and zero beta, is simplified in the high poloidal mode number limit and used to determine the tearing stability parameter,Delta'. In the presence of a steep monotonic current gradient,Delta' becomes a function of a parameter, sigma(0), characterising the ratio of the maximum current gradient to magnetic shear and x(s), characterising the separation of the resonant surface from the maximum of the current gradient. In equilibria containing a current 'spike', so that there is a non-monotonic current profile,Delta' also depends on two parameters: kappa, related to the ratio of the curvature of the current density at its maximum to the magnetic shear and x(s), which now represents the separation of the resonance from the point of maximum current density. The relation of our results to earlier studies of tearing modes and to recent gyrokinetic calculations of current driven instabilities, is discussed, together with potential implications for the stability of the tokamak pedestal.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Effect of the Plasma Pressure on Magnetohydrodynamic Kink Instability in a Cylindrical Geometry
    代玉杰
    刘金远
    王学慧
    Plasma Science and Technology, 2009, 11 (03) : 269 - 273
  • [42] INTERNAL M=1 KINK MODES IN TOKAMAKS
    PAO, YP
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (09): : 1122 - 1122
  • [43] RESISTIVE INTERNAL KINK MODE IN CYLINDRICAL GEOMETRY WITH ZERO PRESSURE
    PELLAT, R
    GALVAO, R
    COPPI, B
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1328 - 1328
  • [44] INTERNAL M=1 KINK MODES IN TOKAMAKS
    PAO, YP
    PHYSICS OF FLUIDS, 1976, 19 (11) : 1796 - 1804
  • [45] NUMERICAL-CALCULATION OF TEARING MODES IN AXISYMMETRIC TOROIDAL GEOMETRY
    GRIMM, RC
    DEWAR, RL
    MANICKAM, J
    CHANCE, MS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 864 - 864
  • [46] HIGH-N KINK MODES
    BERNARD, LC
    DOBROTT, D
    MOORE, RW
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (08): : 921 - 921
  • [47] External kink (peeling) modes in x-point geometry
    Huysmans, GTA
    PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (12) : 2107 - 2121
  • [48] STABILITY OF IDEAL AND RESISTIVE INTERNAL KINK MODES IN TOROIDAL GEOMETRY
    HASTIE, RJ
    HENDER, TC
    CARRERAS, BA
    CHARLTON, LA
    HOLMES, JA
    PHYSICS OF FLUIDS, 1987, 30 (06) : 1756 - 1766
  • [49] Influence of circulating fast ions on nonlinear kink-tearing modes in tokamak plasmas
    Wang, Xian-Qu
    EPL, 2016, 115 (04)
  • [50] COUPLING OF M=2 AND M=3 TEARING MODES IN TOKAMAKS
    FINN, JM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (09): : 1090 - 1090