High-m kink/tearing modes in cylindrical geometry

被引:7
|
作者
Connor, J. W. [1 ,2 ,3 ]
Hastie, R. J. [1 ,2 ]
Pusztai, I. [4 ,5 ]
Catto, P. J. [2 ,4 ]
Barnes, M. [1 ,2 ,6 ]
机构
[1] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
[3] Univ London Imperial Coll Sci Technol & Med, London SW7 2BW, England
[4] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[5] Chalmers, SE-41296 Gothenburg, Sweden
[6] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
基金
英国工程与自然科学研究理事会;
关键词
tearing mode; radially global; magnetohydrodynamic stability; gyrokinetic simulation; HYDROMAGNETIC-STABILITY; TEARING MODES; INSTABILITIES; PLASMAS; TOKAMAK; PINCH;
D O I
10.1088/0741-3335/56/12/125006
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The global ideal kink equation, for cylindrical geometry and zero beta, is simplified in the high poloidal mode number limit and used to determine the tearing stability parameter,Delta'. In the presence of a steep monotonic current gradient,Delta' becomes a function of a parameter, sigma(0), characterising the ratio of the maximum current gradient to magnetic shear and x(s), characterising the separation of the resonant surface from the maximum of the current gradient. In equilibria containing a current 'spike', so that there is a non-monotonic current profile,Delta' also depends on two parameters: kappa, related to the ratio of the curvature of the current density at its maximum to the magnetic shear and x(s), which now represents the separation of the resonance from the point of maximum current density. The relation of our results to earlier studies of tearing modes and to recent gyrokinetic calculations of current driven instabilities, is discussed, together with potential implications for the stability of the tokamak pedestal.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] LINEAR KINETIC-THEORY OF HIGH-M TEARING MODES
    ROSENBERG, M
    DOMINGUEZ, RR
    PFEIFFER, W
    WALTZ, RE
    PHYSICS OF FLUIDS, 1980, 23 (10) : 2022 - 2029
  • [2] NON-LINEAR THEORY OF HIGH-M TEARING MODES
    DOMINGUEZ, RR
    ROSENBERG, M
    CHANG, CS
    PHYSICS OF FLUIDS, 1981, 24 (03) : 472 - 477
  • [3] EXCITATION OF HIGH-M TEARING MODES AT THE SOLAR-FLARE SITE
    KRISHAN, V
    SOLAR PHYSICS, 1982, 80 (02) : 313 - 316
  • [4] LINEAR-THEORY OF HIGH-M DRIFT-TEARING MODES
    DIPPOLITO, DA
    DRAKE, JF
    LEE, YC
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 867 - 867
  • [5] LINEAR-STABILITY OF HIGH-M DRIFT-TEARING MODES
    ROSENBERG, M
    DOMINGUEZ, RR
    PFEIFFER, W
    WALTZ, RE
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 947 - 948
  • [6] LINEAR-STABILITY OF HIGH-M DRIFT-TEARING MODES
    DIPPOLITO, DA
    LEE, YC
    DRAKE, JF
    PHYSICS OF FLUIDS, 1980, 23 (04) : 771 - 782
  • [7] Collisionless tearing modes in cylindrical geometry
    van der Plas, E. V.
    de Blank, H. J.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (03)
  • [8] INTERACTION OF TEARING MODES WITH EXTERNAL STRUCTURES IN CYLINDRICAL GEOMETRY
    FITZPATRICK, R
    NUCLEAR FUSION, 1993, 33 (07) : 1049 - 1084
  • [9] DRIFT-RESISTIVE INTERCHANGE AND TEARING MODES IN CYLINDRICAL GEOMETRY
    FINN, JM
    MANHEIMER, WM
    ANTONSEN, TM
    PHYSICS OF FLUIDS, 1983, 26 (04) : 962 - 973
  • [10] Pressure driven high-n/high-m tearing modes in low shear regions with high pressure gradients and high resistivity
    Gunter, S
    Pinches, SD
    Gude, A
    Hallatschek, K
    Lackner, K
    NUCLEAR FUSION, 1998, 38 (03) : 325 - 329