Theoretical study of the chemical gap tuning in silicon nanowires

被引:60
|
作者
Aradi, B.
Ramos, L. E.
Deak, P.
Koehler, Th.
Bechstedt, F.
Zhang, R. Q.
Frauenheim, Th.
机构
[1] Univ Bremen, Bremen Ctr Computat Mat Sci, D-28359 Bremen, Germany
[2] Univ Jena, Inst Festkorpertheorie & Opt, D-07743 Jena, Germany
[3] City Univ Hong Kong, Ctr Super Diamond & Adv Films, Hong Kong, Hong Kong, Peoples R China
[4] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
来源
PHYSICAL REVIEW B | 2007年 / 76卷 / 03期
关键词
D O I
10.1103/PhysRevB.76.035305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dependence of the structural, electronic, and optical properties on the passivating shell of < 110 > and < 112 > silicon nanowires is investigated by a combination of theoretical methods. We show that the band structure around the Fermi level is strongly influenced by the direction of the nanowire as well as by the chemical properties of the passivating shell. This indicates that the wavelength of eventual light-emitting devices could be tuned by the choice of the surface coverage.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Theoretical study of the structural and electronic properties of impurities in non-passivated silicon thin nanowires
    Almeida Cruz, F. L.
    Carvalho, A. C. M.
    Leite Alves, H. W.
    SOLID STATE COMMUNICATIONS, 2019, 290 : 1 - 6
  • [32] High-stability finite-length silicon nanowires: A real space theoretical study
    Koukaras, E. N.
    Zdetsis, A. D.
    Garoufalis, C. S.
    COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 : 375 - 378
  • [33] Geometric and chemical components of the giant piezoresistance in silicon nanowires
    McClarty, M. M.
    Jegenyes, N.
    Gaudet, M.
    Toccafondi, C.
    Ossikovski, R.
    Vaurette, F.
    Arscott, S.
    Rowe, A. C. H.
    APPLIED PHYSICS LETTERS, 2016, 109 (02)
  • [34] Chemical surface passivation of silicon nanowires grown by APCVD
    Swain, Bhabani S.
    Swain, Bibhu P.
    Hwang, Nong M.
    CURRENT APPLIED PHYSICS, 2010, 10 (03) : S439 - S442
  • [35] Silicon carbide nanowires: chemical characterization and morphology investigations
    Busiakiewicz, A.
    Huczko, A.
    Lange, H.
    Kowalczyk, P. J.
    Rogala, M.
    Kozlowski, W.
    Klusek, Z.
    Olejniczak, W.
    Polanski, K.
    Cudzilo, S.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (10): : 2094 - 2097
  • [36] The theoretical direct-band-gap optical gain of Germanium nanowires
    Wen Xiong
    Jian-Wei Wang
    Wei-Jun Fan
    Zhi-Gang Song
    Chuan-Seng Tan
    Scientific Reports, 10
  • [37] Tuning the electronic structure of graphene nanoribbons through chemical edge modification: A theoretical study
    Wang, Z. F.
    Li, Qunxiang
    Zheng, Huaixiu
    Ren, Hao
    Su, Haibin
    Shi, Q. W.
    Chen, Jie
    PHYSICAL REVIEW B, 2007, 75 (11)
  • [38] The theoretical direct-band-gap optical gain of Germanium nanowires
    Xiong, Wen
    Wang, Jian-Wei
    Fan, Wei-Jun
    Song, Zhi-Gang
    Tan, Chuan-Seng
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [39] Cellular Toxicity Study of Silicon Nanowires
    Song, Ziyan
    Wu, Fenglei
    Zheng, Yitong
    Xu, Xintang
    Tang, Qiang
    Bian, Baoxiang
    DOSE-RESPONSE, 2020, 18 (02):
  • [40] Accurate single-particle determination of the band gap in silicon nanowires
    Rurali, R.
    Aradi, B.
    Frauenheim, Th.
    Gali, A.
    PHYSICAL REVIEW B, 2007, 76 (11):