Statistical fluctuations of transmission in slow light photonic-crystal waveguides

被引:37
|
作者
Mazoyer, S. [1 ]
Lalanne, P. [1 ]
Rodier, J. C. [1 ]
Hugonin, J. P. [1 ]
Spasenovic, M. [2 ]
Kuipers, L. [2 ]
Beggs, D. M. [3 ]
Krauss, T. F. [3 ]
机构
[1] Univ Paris Sud, CNRS, Inst Opt, Lab Charles Fabry, F-91127 Palaiseau, France
[2] FOM Inst Atom & Mol Phys, Ctr Nanophoton, NL-1098 XG Amsterdam, Netherlands
[3] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland
来源
OPTICS EXPRESS | 2010年 / 18卷 / 14期
关键词
DIMENSIONAL DISORDERED-SYSTEMS; GROUP-VELOCITY; SCATTERING; NANOCAVITIES; TRANSPORT; LOSSES; DELAY; SLABS;
D O I
10.1364/OE.18.014654
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report statistical fluctuations for the transmissions of a series of photonic-crystal waveguides (PhCWs) that are supposedly identical and that only differ because of statistical structural fabrication-induced imperfections. For practical PhCW lengths offering tolerable -3dB attenuation with moderate group indices (n(g)approximate to 60), the transmission spectra contains very narrow peaks (Q approximate to 20,000) that vary from one waveguide to another. The physical origin of the peaks is explained by calculating the actual electromagnetic-field pattern inside the waveguide. The peaks that are observed in an intermediate regime between the ballistic and localization transports are responsible for a smearing of the local density of states, for a rapid broadening of the probability density function of the transmission, and bring a severe constraint on the effective use of slow light for on-chip optical information processing. The experimental results are quantitatively supported by theoretical results obtained with a coupled-Bloch-mode approach that takes into account multiple scattering and localization effects. (C) 2010 Optical Society of America
引用
收藏
页码:14654 / 14663
页数:10
相关论文
共 50 条
  • [21] Light transport regimes in slow light photonic crystal waveguides
    Le Thomas, N.
    Zhang, H.
    Jagerska, J.
    Zabelin, V.
    Houdre, R.
    Sagnes, I.
    Talneau, A.
    [J]. PHYSICAL REVIEW B, 2009, 80 (12):
  • [22] Photonic crystal slow light waveguides in a kagome lattice
    Schulz, Sebastian A.
    Upham, Jeremy
    O'Faolain, Liam
    Boyd, Robert W.
    [J]. OPTICS LETTERS, 2017, 42 (16) : 3243 - 3246
  • [23] Controlling and Switching Slow Light in Photonic Crystal Waveguides
    Beggs, Daryl M.
    Kampfrath, Tobias
    Rey, Isabella
    Krauss, Thomas F.
    Kuipers, L.
    [J]. 2011 13TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2011,
  • [24] Linear waveguides in photonic-crystal slabs
    Johnson, SG
    Villeneuve, PR
    Fan, SH
    Joannopoulos, JD
    [J]. PHYSICAL REVIEW B, 2000, 62 (12): : 8212 - 8222
  • [25] Slow light in quantum dot photonic crystal waveguides
    Nielsen, Torben Roland
    Lavrinenko, Andrei
    Mork, Jesper
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (11)
  • [26] Dispersionless tunneling of slow light in antisymmetric photonic-crystal couplers
    Ha, Sangwoo
    Sukhorukov, Andrey A.
    Dossou, Kokou B.
    Botten, Lindsay C.
    Kivshar, Yuri S.
    [J]. 2007 PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1-4, 2007, : 1111 - +
  • [27] Reconfigurable multimode photonic-crystal waveguides
    Kurt, Hamza
    Citrin, David S.
    [J]. OPTICS EXPRESS, 2008, 16 (16) : 11995 - 12001
  • [28] Highly dispersive photonic-crystal waveguides
    Iliew, R
    Etrich, C
    Peschel, U
    Lederer, F
    Augustin, M
    Fuchs, HJ
    Schelle, D
    Kley, EB
    Nolte, S
    Tünnermann, A
    [J]. 2005 Conference on Lasers & Electro-Optics (CLEO), Vols 1-3, 2005, : 1162 - 1164
  • [29] Transmission behavior of microwaves through photonic-crystal waveguides fabricated by stereolithography
    Kirihara, S
    Takeda, MW
    Sakoda, K
    Miyamoto, Y
    [J]. LASER PHYSICS, 2004, 14 (05) : 648 - 653
  • [30] Low-Loss Slow Light Transmission in Photonic Crystal Waveguides Comprising of Liquid Crystal Infiltration
    Swati Rawal
    R.K.Sinha
    [J]. Journal of Electronic Science and Technology, 2010, 8 (01) : 35 - 38