Efficient Trainability of Linear Optical Modules in Quantum Optical Neural Networks

被引:7
|
作者
Volkoff, Tyler J. [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
关键词
continuous-variable variational quantum algorithms; quantum machine learning; quantum optical neural networks; BARREN PLATEAUS;
D O I
10.1007/s10946-021-09958-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The existence of "barren plateau landscapes" for generic discrete-variable quantum neural networks, which obstructs efficient gradient-based optimization of cost functions defined by global measurements, would be surprising in the case of generic linear optical modules in quantum optical neural networks due to the tunability of the intensity of continuous variable states and the relevant unitary group having exponentially smaller dimension. We demonstrate that coherent light in m modes can be generically compiled efficiently if the total intensity scales sublinearly with m, and extend this result to cost functions based on homodyne, heterodyne, or photon detection measurement statistics, and to noisy cost functions in the presence of attenuation. We further demonstrate efficient trainability of m mode linear optical quantum circuits for variational mean field energy estimation of positive quadratic Hamiltonians for input states that do not have energy exponentially vanishing with m.
引用
收藏
页码:250 / 260
页数:11
相关论文
共 50 条
  • [41] Efficient linear optical generation of a multipartite W state via a quantum eraser
    Kim, Yong-Su
    Cho, Young-Wook
    Lim, Hyang-Tag
    Han, Sang-Wook
    PHYSICAL REVIEW A, 2020, 101 (02)
  • [42] Efficient Simulation of Loop Quantum Gravity: A Scalable Linear-Optical Approach
    Cohen, Lior
    Brady, Anthony J.
    Huang, Zichang
    Liu, Hongguang
    Qu, Dongxue
    Dowling, Jonathan R.
    Han, Muxin
    PHYSICAL REVIEW LETTERS, 2021, 126 (02)
  • [43] Quantum Technologies for future Quantum Optical Networks
    Gatto, Alberto
    Pedro Brito, Juan
    Brunero, Marco
    Bodanapu, Dileepsai
    Mendez, Ruben B.
    Vicente, Rafael J.
    Comi, Paolo
    Martin, Vicente
    Martelli, Paolo
    2021 INTERNATIONAL CONFERENCE ON OPTICAL NETWORK DESIGN AND MODELLING (ONDM), 2021,
  • [44] Theoretical analysis of on-chip linear quantum optical information processing networks
    Hach, Edwin E., III
    Preble, Stefan F.
    Steidle, Jeffrey A.
    QUANTUM INFORMATION AND COMPUTATION XIII, 2015, 9500
  • [45] Capacities of linear quantum optical systems
    Lupo, Cosmo
    Giovannetti, Vittorio
    Pirandola, Stefano
    Mancini, Stefano
    Lloyd, Seth
    PHYSICAL REVIEW A, 2012, 85 (06)
  • [46] Integration of Diffractive Optical Neural Networks with Electronic Neural Networks
    Mengu, Deniz
    Luo, Yi
    Rivenson, Yair
    Ozcan, Aydogan
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [47] Coherent Ising machines-optical neural networks operating at the quantum limit
    Yamamoto, Yoshihisa
    Aihara, Kazuyuki
    Leleu, Timothee
    Kawarabayashi, Ken-ichi
    Kako, Satoshi
    Fejer, Martin
    Inoue, Kyo
    Takesue, Hiroki
    NPJ QUANTUM INFORMATION, 2017, 3
  • [48] Deterministic optical quantum computer using photonic modules
    Stephens, Ashley M.
    Evans, Zachary W. E.
    Devitt, Simon J.
    Greentree, Andrew D.
    Fowler, Austin G.
    Munro, William J.
    O'Brien, Jeremy L.
    Nemoto, Kae
    Hollenberg, Lloyd C. L.
    PHYSICAL REVIEW A, 2008, 78 (03):
  • [49] An Optical Model for Predicting the Quantum Efficiency of Solar Modules
    Gjessing, Jo
    Marstein, Erik Stensrud
    IEEE JOURNAL OF PHOTOVOLTAICS, 2014, 4 (01): : 304 - 310
  • [50] Light in AI: Toward Efficient Neurocomputing With Optical Neural Networks-A Tutorial
    Gu, Jiaqi
    Feng, Chenghao
    Zhu, Hanqing
    Chen, Ray T.
    Pan, David Z.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (06) : 2581 - 2585