Efficient Trainability of Linear Optical Modules in Quantum Optical Neural Networks

被引:7
|
作者
Volkoff, Tyler J. [1 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
关键词
continuous-variable variational quantum algorithms; quantum machine learning; quantum optical neural networks; BARREN PLATEAUS;
D O I
10.1007/s10946-021-09958-1
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The existence of "barren plateau landscapes" for generic discrete-variable quantum neural networks, which obstructs efficient gradient-based optimization of cost functions defined by global measurements, would be surprising in the case of generic linear optical modules in quantum optical neural networks due to the tunability of the intensity of continuous variable states and the relevant unitary group having exponentially smaller dimension. We demonstrate that coherent light in m modes can be generically compiled efficiently if the total intensity scales sublinearly with m, and extend this result to cost functions based on homodyne, heterodyne, or photon detection measurement statistics, and to noisy cost functions in the presence of attenuation. We further demonstrate efficient trainability of m mode linear optical quantum circuits for variational mean field energy estimation of positive quadratic Hamiltonians for input states that do not have energy exponentially vanishing with m.
引用
收藏
页码:250 / 260
页数:11
相关论文
共 50 条
  • [1] Efficient Trainability of Linear Optical Modules in Quantum Optical Neural Networks
    Tyler J. Volkoff
    Journal of Russian Laser Research, 2021, 42 : 250 - 260
  • [2] Quantum optical neural networks
    Steinbrecher, Gregory R.
    Olson, Jonathan P.
    Englund, Dirk
    Carolan, Jacques
    NPJ QUANTUM INFORMATION, 2019, 5 (1)
  • [3] Quantum optical neural networks
    Gregory R. Steinbrecher
    Jonathan P. Olson
    Dirk Englund
    Jacques Carolan
    npj Quantum Information, 5
  • [4] Efficient linear optical quantum computation
    Pryde, GJ
    O'Brien, JL
    Bell, TB
    Langford, NK
    Milburn, GJ
    Ralph, TC
    White, AG
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, PROCEEDINGS, 2003, : 253 - 256
  • [5] Power Efficient Data Communication Modules for Optical Networks
    Schroeder, Henning
    Brusberg, Lars
    Stobbe, Lutz
    Tekin, Tolga
    MICRO-OPTICS 2010, 2010, 7716
  • [6] Efficient training of unitary optical neural networks
    Lu, Kunrun
    Guo, Xianxin
    OPTICS EXPRESS, 2023, 31 (24) : 39616 - 39623
  • [7] Trainability of Dissipative Perceptron-Based Quantum Neural Networks
    Sharma, Kunal
    Cerezo, M.
    Cincio, Lukasz
    Coles, Patrick J.
    PHYSICAL REVIEW LETTERS, 2022, 128 (18)
  • [8] Implementation of an efficient linear-optical quantum router
    Karol Bartkiewicz
    Antonín Černoch
    Karel Lemr
    Scientific Reports, 8
  • [9] Implementation of an efficient linear-optical quantum router
    Bartkiewicz, Karol
    Cernoch, Antonin
    Lemr, Karel
    SCIENTIFIC REPORTS, 2018, 8
  • [10] Resource-efficient linear optical quantum computation
    Browne, DE
    Rudolph, T
    PHYSICAL REVIEW LETTERS, 2005, 95 (01)