Target Robust Discriminant Analysis

被引:1
|
作者
Kouw, Wouter M. [1 ]
Loog, Marco [2 ,3 ]
机构
[1] TU Eindhoven, Groene Loper 19, Eindhoven, Netherlands
[2] Delft Univ Technol, Mourik Broekmanweg 6, Delft, Netherlands
[3] Univ Copenhagen, Univ Pk 1, Copenhagen, Denmark
关键词
Domain adaptation; Robustness; Discriminant analysis;
D O I
10.1007/978-3-030-73973-7_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In practice, the data distribution at test time often differs, to a smaller or larger extent, from that of the original training data. Consequentially, the so-called source classifier, trained on the available labelled data, deteriorates on the test, or target, data. Domain adaptive classifiers aim to combat this problem, but typically assume some particular form of domain shift. Most are not robust to violations of domain shift assumptions and may even perform worse than their non-adaptive counterparts. We construct robust parameter estimators for discriminant analysis that guarantee performance improvements of the adaptive classifier over the non-adaptive source classifier.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 50 条
  • [1] Robust discriminant analysis
    Hubert, Mia
    Raymaekers, Jakob
    Rousseeuw, Peter J.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (05):
  • [2] Fast and robust discriminant analysis
    Hubert, M
    Van Driessen, K
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (02) : 301 - 320
  • [3] Robust sparse manifold discriminant analysis
    Jingjing Wang
    Zhonghua Liu
    Kaibing Zhang
    Qingtao Wu
    Mingchuan Zhang
    [J]. Multimedia Tools and Applications, 2022, 81 : 20781 - 20796
  • [4] Robust sparse manifold discriminant analysis
    Wang, Jingjing
    Liu, Zhonghua
    Zhang, Kaibing
    Wu, Qingtao
    Zhang, Mingchuan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (15) : 20781 - 20796
  • [5] Robust Sparse Linear Discriminant Analysis
    Wen, Jie
    Fang, Xiaozhao
    Cui, Jinrong
    Fei, Lunke
    Yan, Ke
    Chen, Yan
    Xu, Yong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (02) : 390 - 403
  • [6] Robust Clustering Using Discriminant Analysis
    Bhatnagar, Vasudha
    Ahuja, Sangeeta
    [J]. ADVANCES IN DATA MINING: APPLICATIONS AND THEORETICAL ASPECTS, 2010, 6171 : 143 - +
  • [7] Robust Fast Subclass Discriminant Analysis
    Chumachenko, Kateryna
    Iosifidis, Alexandros
    Gabbouj, Moncef
    [J]. 28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1397 - 1401
  • [8] Robust linearly optimized discriminant analysis
    Zhang, Zhao
    Chow, Tommy W. S.
    [J]. NEUROCOMPUTING, 2012, 79 : 140 - 157
  • [9] Robust generalised quadratic discriminant analysis
    Ghosh, Abhik
    SahaRay, Rita
    Chakrabarty, Sayan
    Bhadra, Sayan
    [J]. PATTERN RECOGNITION, 2021, 117
  • [10] ROBUST CANONICAL DISCRIMINANT-ANALYSIS
    VERBOON, P
    VANDERLANS, IA
    [J]. PSYCHOMETRIKA, 1994, 59 (04) : 485 - 507