Robust discriminant analysis

被引:0
|
作者
Hubert, Mia [1 ]
Raymaekers, Jakob [2 ]
Rousseeuw, Peter J. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Leuven, Belgium
[2] Univ Antwerp, Dept Math, Antwerp, Belgium
关键词
classification; classmap; outlier detection; robust statistics; ALGORITHM;
D O I
10.1002/wics.70003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Discriminant analysis (DA) is one of the most popular methods for classification due to its conceptual simplicity, low computational cost, and often solid performance. In its standard form, DA uses the arithmetic mean and sample covariance matrix to estimate the center and scatter of each class. We discuss and illustrate how this makes standard DA very sensitive to suspicious data points, such as outliers and mislabeled cases. We then present an overview of techniques for robust DA, which are more reliable in the presence of deviating cases. In particular, we review DA based on robust estimates of location and scatter, along with graphical diagnostic tools for visualizing the results of DA.<br /> This article is categorized under: Statistical and Graphical Methods of Data Analysis > Robust Methods<br /> Statistical Learning and Exploratory Methods of the Data Sciences > Clustering and Classification
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Target Robust Discriminant Analysis
    Kouw, Wouter M.
    Loog, Marco
    [J]. STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2020, 2021, 12644 : 3 - 13
  • [2] Fast and robust discriminant analysis
    Hubert, M
    Van Driessen, K
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 45 (02) : 301 - 320
  • [3] Robust sparse manifold discriminant analysis
    Jingjing Wang
    Zhonghua Liu
    Kaibing Zhang
    Qingtao Wu
    Mingchuan Zhang
    [J]. Multimedia Tools and Applications, 2022, 81 : 20781 - 20796
  • [4] Robust sparse manifold discriminant analysis
    Wang, Jingjing
    Liu, Zhonghua
    Zhang, Kaibing
    Wu, Qingtao
    Zhang, Mingchuan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (15) : 20781 - 20796
  • [5] Robust linearly optimized discriminant analysis
    Zhang, Zhao
    Chow, Tommy W. S.
    [J]. NEUROCOMPUTING, 2012, 79 : 140 - 157
  • [6] Robust generalised quadratic discriminant analysis
    Ghosh, Abhik
    SahaRay, Rita
    Chakrabarty, Sayan
    Bhadra, Sayan
    [J]. PATTERN RECOGNITION, 2021, 117
  • [7] Robust Fast Subclass Discriminant Analysis
    Chumachenko, Kateryna
    Iosifidis, Alexandros
    Gabbouj, Moncef
    [J]. 28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1397 - 1401
  • [8] Robust Sparse Linear Discriminant Analysis
    Wen, Jie
    Fang, Xiaozhao
    Cui, Jinrong
    Fei, Lunke
    Yan, Ke
    Chen, Yan
    Xu, Yong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (02) : 390 - 403
  • [9] Robust Clustering Using Discriminant Analysis
    Bhatnagar, Vasudha
    Ahuja, Sangeeta
    [J]. ADVANCES IN DATA MINING: APPLICATIONS AND THEORETICAL ASPECTS, 2010, 6171 : 143 - +
  • [10] ROBUST CANONICAL DISCRIMINANT-ANALYSIS
    VERBOON, P
    VANDERLANS, IA
    [J]. PSYCHOMETRIKA, 1994, 59 (04) : 485 - 507