CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects

被引:49
|
作者
Paul, Joseph W., III [1 ]
Qi, Yiping [1 ]
机构
[1] E Carolina Univ, Dept Biol, Thomas Harriot Coll Arts & Sci, Greenville, NC 27858 USA
关键词
Genome editing; Plant biotechnology; Transcriptional regulation; Gene targeting; Synthetic biology; CRISPR; Cas9; DOUBLE-STRAND BREAKS; HOMOLOGOUS RECOMBINATION; TARGETED MUTAGENESIS; PAIRED NICKASES; TRANSCRIPTIONAL ACTIVATION; GUIDE RNA; GENE; DNA; CAS9; NUCLEASES;
D O I
10.1007/s00299-016-1985-z
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The increasing burden of the world population on agriculture requires the development of more robust crops. Dissecting the basic biology that underlies plant development and stress responses will inform the design of better crops. One powerful tool for studying plants at the molecular level is the RNA-programmed genome editing system composed of a clustered regularly interspaced short palindromic repeats (CRISPR)-encoded guide RNA and the nuclease Cas9. Here, some of the recent advances in CRISPR/Cas9 technology that have profound implications for improving the study of plant biology are described. These tools are also paving the way towards new horizons for biotechnologies and crop development.
引用
收藏
页码:1417 / 1427
页数:11
相关论文
共 50 条
  • [21] CRISPR/CAS9, the King of Genome Editing Tools
    Bannikov, A. V.
    Lavrov, A. V.
    [J]. MOLECULAR BIOLOGY, 2017, 51 (04) : 514 - 525
  • [22] Genome Editing in Cotton with the CRISPR/Cas9 System
    Gao, Wei
    Long, Lu
    Tian, Xinquan
    Xu, Fuchun
    Liu, Ji
    Singh, Prashant K.
    Botella, Jose R.
    Song, Chunpeng
    [J]. FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [23] CRISPR/Cas9 and other techniques for genome editing
    Hartung, Frank
    Schiemann, Jochen
    Sprink, Thorben
    [J]. ZWEITES SYMPOSIUM ZIERPFLANZENZUCHTUNG, 2017, 2017, 457 : 36 - 39
  • [24] Legal Regulation of Plant Genome Editing with the CRISPR/Cas9 Technology as an Example
    Medvedieva, M. O.
    Blume, Ya. B.
    [J]. CYTOLOGY AND GENETICS, 2018, 52 (03) : 204 - 212
  • [25] Advances in therapeutic CRISPR/Cas9 genome editing
    Savic, Natasa
    Schwank, Gerald
    [J]. TRANSLATIONAL RESEARCH, 2016, 168 : 15 - 21
  • [26] Translating CRISPR/Cas9 genome editing into therapeutics
    Barnes, T. M.
    [J]. HUMAN GENE THERAPY, 2016, 27 (11) : A140 - A141
  • [27] A glance at genome editing with CRISPR–Cas9 technology
    Antara Barman
    Bornali Deb
    Supriyo Chakraborty
    [J]. Current Genetics, 2020, 66 : 447 - 462
  • [28] Efficient Mitochondrial Genome Editing by CRISPR/Cas9
    Jo, Areum
    Ham, Sangwoo
    Lee, Gum Hwa
    Lee, Yun-Il
    Kim, SangSeong
    Lee, Yun-Song
    Shin, Joo-Ho
    Lee, Yunjong
    [J]. BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [29] CRISPR/Cas9: Transcending the Reality of Genome Editing
    Chira, Sergiu
    Gulei, Diana
    Hajitou, Amin
    Zimta, Alina-Andreea
    Cordelier, Pierre
    Berindan-Neagoe, Ioana
    [J]. MOLECULAR THERAPY-NUCLEIC ACIDS, 2017, 7 : 211 - 222
  • [30] Legal Regulation of Plant Genome Editing with the CRISPR/Cas9 Technology as an Example
    M. O. Medvedieva
    Ya. B. Blume
    [J]. Cytology and Genetics, 2018, 52 : 204 - 212