DOA-Based Endoscopy Capsule Localization and Orientation Estimation via Unscented Kalman Filter

被引:56
|
作者
Goh, Shu Ting [1 ]
Zekavat, Seyed A. [2 ]
Pahlavan, Kaveh [3 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Michigan Technol Univ, Dept Elect & Comp Engn, Houghton, MI 49931 USA
[3] Worcester Polytech Inst, Dept Elect & Comp Engn, Worcester, MA 01609 USA
关键词
Kalman filters; directional-of-arrival; capsule endoscopy; body sensor networks; WIRELESS; TRACKING; ARRAY; POSITION; SYSTEMS; FUSION;
D O I
10.1109/JSEN.2014.2342720
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The endoscopy capsule is a medical device capable of capturing images inside human's digestion system, specifically the small and big intestine. For medical diagnostics and surgery, it is required to know the position and direction of the image taken inside digestion system. This paper considers an alternative method of presurgery gastroscopy and colonoscopy monitoring procedure that allows the patient to freely move inside the medical ward. The direction-of-arrival (DOA) and inertial measurement unit (IMU) measurements are integrated to track the movement of capsule with respect to patient's body reference frame. The DOA is estimated via antenna arrays installed within a medical ward and the IMU is installed on the capsule endoscopy. The IMU sends the position information wirelessly to the antenna arrays in medical ward. Additional beacons are attached to the patient to allow body orientation and absolute position estimation due to the free movement. The nonhomogeneous nature of human body refracts the signal transmitted by the capsule, which leads to a highly nonlinear DOA function. This paper implements the unscented Kalman filter (UKF) to track the capsule by fusing the measurements made by DOA, IMU, and additional beacons attached to the patient. Simulations are conducted to investigate the capsule tracking and orientation estimation performance with respect to DOA resolution and beacons localization accuracy. Results confirm that compared with the DOA resolution, the beacons localization accuracy has a higher impact on the capsule orientation estimation performance. Furthermore, this paper investigates the impact of the number of available antenna arrays on multiplication required by UKF.
引用
收藏
页码:3819 / 3829
页数:11
相关论文
共 50 条
  • [11] An adaptive unscented Kalman filter for quaternion-based orientation estimation in low-cost AHRS
    Pourtakdoust, S. H.
    Asl, H. Ghanbarpour
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2007, 79 (05): : 485 - 493
  • [12] Time difference Localization Algorithm Based on Modified Unscented Kalman Filter
    Liu, Lian
    Xiang, Fenghong
    Mao, Jianlin
    Zhang, Maoxing
    2015 CHINESE AUTOMATION CONGRESS (CAC), 2015, : 1879 - 1884
  • [13] Generalizing the Unscented Kalman Filter for State Estimation
    Butler, Quade
    Hilal, Waleed
    Sicard, Brett
    Ziada, Youssef
    Gadsden, S. Andrew
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXXII, 2023, 12547
  • [14] POSITION ESTIMATION USING UNSCENTED KALMAN FILTER
    Konatowski, Stanislaw
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2006, 52 (02) : 229 - 243
  • [15] Unscented Kalman filter for vehicle state estimation
    Antonov, S.
    Fehn, A.
    Kugi, A.
    VEHICLE SYSTEM DYNAMICS, 2011, 49 (09) : 1497 - 1520
  • [16] Recursive parameter estimation of thermostatically controlled loads via unscented Kalman filter
    Burger, Eric M.
    Moura, Scott J.
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2016, 8 : 12 - 25
  • [17] Airborne Platform Estimation Based on the Algorithm of Unscented Kalman Filter Quaternion
    Lin Feng
    Ba Yue
    Qu Xiaoguang
    2016 IEEE CHINESE GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2016, : 38 - 43
  • [18] A novel battery state estimation model based on unscented Kalman filter
    Jiabo Li
    Min Ye
    Kangping Gao
    Shengjie Jiao
    Xinxin Xu
    Ionics, 2021, 27 : 2673 - 2683
  • [19] Vehicle State Estimation Based on Adaptive Fading Unscented Kalman Filter
    Liu, Yingjie
    Cui, Dawei
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [20] Lithium Battery SOC Estimation Based on Improved Unscented Kalman Filter
    Hu, Jieyu
    Wu, Songrong
    Wang, YiYang
    Lu, Fan
    Liu, Dong
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 511 - 515