CUTOFF ESTIMATES FOR THE LINEARIZED BECKER-DORING EQUATIONS

被引:4
|
作者
Murray, Ryan W. [1 ]
Pego, Robert L. [2 ,3 ]
机构
[1] Penn State Univ, Dept Math, State Coll, PA 16801 USA
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Ctr Nonlinear Anal, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
coagulation-fragmentation equations; spectrum; cutoff estimates; CLUSTER EQUATIONS; EQUILIBRIUM;
D O I
10.4310/CMS.2017.v15.n6.a10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper continues the authors' previous study [R. Murray and R. Pego, SIAM J. Math. Anal., 48:2819-2842, 2016] of the trend toward equilibrium of the Becker Doring equations with subcritical mass, by characterizing certain fine properties of solutions to the linearized equation. In particular, we partially characterize the spectrum of the linearized operator, showing that it contains the entire imaginary axis in polynomially weighted spaces. Moreover, we prove detailed cutoff estimates that establish upper and lower bounds on the lifetime of a class of perturbations to equilibrium.
引用
收藏
页码:1685 / 1702
页数:18
相关论文
共 50 条