A Tight RMR Lower Bound for Randomized Mutual Exclusion

被引:0
|
作者
Giakkoupis, George [1 ]
Woelfel, Philipp [2 ]
机构
[1] INRIA Rennes Bretagne Atlantique, Rennes, France
[2] Univ Calgary, Calgary, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Mutual exclusion; Lower bound; Remote memory references; RMRs; Strong adversary; Randomization; IMPLEMENTATIONS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Cache Coherent (CC) and the Distributed Shared Memory (DSM) models are standard shared memory models, and the Remote Memory Reference (RMR) complexity is considered to accurately predict the actual performance of mutual exclusion algorithms in shared memory systems. In this paper we prove a tight lower bound for the RMR complexity of deadlock-free randomized mutual exclusion algorithms in both the CC and the DSM model with atomic registers and compare&swap objects and an adaptive adversary. Our lower bound establishes that an adaptive adversary can schedule n processes in such a way that each enters the critical section once, and the total number of RMRs is Omega(n log n/log log n) in expectation. This matches an upper bound of Hendler and Woelfel [16].
引用
收藏
页码:983 / 1001
页数:19
相关论文
共 50 条
  • [31] Tight Lower Bound for Linear Sketches of Moments
    Andoni, Alexandr
    Nguyen, Huy L.
    Polyanskiy, Yury
    Wu, Yihong
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2013, 7965 : 25 - 32
  • [32] A tight lower bound for optimal bin packing
    Chao, HY
    Harper, MP
    Quong, RW
    OPERATIONS RESEARCH LETTERS, 1995, 18 (03) : 133 - 138
  • [33] A TIGHT LOWER BOUND FOR THE TRAIN REVERSAL PROBLEM
    AGGARWAL, A
    LEIGHTON, T
    INFORMATION PROCESSING LETTERS, 1990, 35 (06) : 301 - 304
  • [34] A Tight Lower Bound for Planar Steiner Orientation
    Chitnis, Rajesh
    Feldmann, Andreas Emil
    Suchy, Ondrej
    ALGORITHMICA, 2019, 81 (08) : 3200 - 3216
  • [35] A TIGHT LOWER BOUND ON THE SIZE OF VISIBILITY GRAPHS
    SHEN, X
    EDELSBRUNNER, H
    INFORMATION PROCESSING LETTERS, 1987, 26 (02) : 61 - 64
  • [36] A tight lower bound for the best-α algorithm
    Torng, E
    Uthaisombut, P
    INFORMATION PROCESSING LETTERS, 1999, 71 (01) : 17 - 22
  • [37] A tight lower bound for restricted pir protocols
    Richard Beigel
    Lance Fortnow
    William Gasarch
    computational complexity, 2006, 15 : 82 - 91
  • [38] A tight lower bound for job scheduling with cancellation
    Zheng, FF
    Chin, FYL
    Fung, SPY
    Poon, CK
    Xu, YF
    INFORMATION PROCESSING LETTERS, 2006, 97 (01) : 1 - 3
  • [39] Betweenness parameterized above tight lower bound
    Gutin, Gregory
    Kim, Eun Jung
    Mnich, Matthias
    Yeo, Anders
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2010, 76 (08) : 872 - 878
  • [40] A Tight Lower Bound for Planar Steiner Orientation
    Rajesh Chitnis
    Andreas Emil Feldmann
    Ondřej Suchý
    Algorithmica, 2019, 81 : 3200 - 3216