Compressive sensing with variable density sampling for 3D imaging

被引:3
|
作者
Stern, Adrian [1 ]
Kravets, Vladislav [1 ]
Rivenson, Yair [2 ]
Javidi, Bahram [3 ]
机构
[1] Ben Gurion Univ Negev, Sch Elect Engn & Comp Engn, Electroopt Dept, IL-84105 Beer Sheva, Israel
[2] Univ Calif Los Angeles, Dept Elect Engn & Comp Engn, Los Angeles, CA 90095 USA
[3] Univ Connecticut, Dept Elect & Comp Engn, U-2157, Storrs, CT 06269 USA
关键词
Compressive sensing; variable random sensing; holography; LIDAR;
D O I
10.1117/12.2521738
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Compressive Sensing (CS) can alleviate the sensing effort involved in the acquisition of three dimensional image (3D) data. The most common CS sampling schemes employ uniformly random sampling because it is universal, thus it is applicable to almost any signals. However, by considering general properties of images and properties of the acquisition mechanism, it is possible to design random sampling schemes with variable density that have improved CS performance. We have introduced the concept of non-uniform CS random sampling a decade ago for holography. In this paper we overview the non-uniform CS random concept evolution and application for coherent holography, incoherent holography and for 3D LiDAR imaging.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Low dosage 3D volume fluorescence microscopy imaging using compressive sensing
    Mannam, Varun
    Brandt, Jacob
    Smith, Cody J.
    Howard, Scott
    THREE-DIMENSIONAL AND MULTIDIMENSIONAL MICROSCOPY: IMAGE ACQUISITION AND PROCESSING XXIX, 2022, 11966
  • [22] Building 3D Dynamic Keyhole Library with Compressive Sensing and Parallel Imaging Reconstruction
    Lam, D.
    Lewis, B.
    Gach, H.
    Mutic, S.
    Kim, T.
    MEDICAL PHYSICS, 2020, 47 (06) : E516 - E516
  • [23] 3D compressive spectral integral imaging
    Feng, Weiyi
    Rueda, Hoover
    Fu, Chen
    Arce, Gonzalo R.
    He, Weiji
    Chen, Qian
    OPTICS EXPRESS, 2016, 24 (22): : 24859 - 24871
  • [24] 3D Interferometric ISAR via Compressive Sensing
    Bacci, A.
    Stagliano, D.
    Giusti, E.
    Tomei, S.
    Berizzi, F.
    Martorella, M.
    2014 11TH EUROPEAN RADAR CONFERENCE (EURAD), 2014, : 233 - 236
  • [25] 3D sensing and imaging for UAVs
    Gronwall, Christina
    Tolt, Gustav
    Lif, Patrik
    Larsson, Hakan
    Bissmarck, Fredrik
    Tulldahl, Michael
    Henriksson, Markus
    Wikberg, Per
    Thorstensson, Mirko
    ELECTRO-OPTICAL REMOTE SENSING, PHOTONIC TECHNOLOGIES, AND APPLICATIONS IX, 2015, 9649
  • [26] 3D IMAGING METHOD FOR STEPPED FREQUENCY GROUND PENETRATING RADAR BASED ON COMPRESSIVE SENSING
    Cai, J. -L.
    Tong, C. -M.
    Zhong, W. -J.
    Ji, W. -J.
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2012, 23 (23): : 153 - 165
  • [27] QUANTITATIVE 3D IMAGING - SAMPLING EFFECTS
    POUSSE, A
    BENYOUNES, R
    MAS, J
    BIDET, R
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE, 1992, 19 (08): : 642 - 642
  • [28] Depth map resolution enhancement for 2D/3D imaging system via compressive sensing
    Han, Juanjuan
    Loffeld, Otmar
    Hartmann, Klaus
    INTERNATIONAL SYMPOSIUM ON PHOTOELECTRONIC DETECTION AND IMAGING 2011: ADVANCES IN IMAGING DETECTORS AND APPLICATIONS, 2011, 8194
  • [29] Advanced Compressive Sensing and Dynamic Sampling for 4D-STEM Imaging of Interfaces
    Smith, Jacob
    Tran, Hoang
    Roccapriore, Kevin M.
    Shen, Zhaiming
    Zhang, Guannan
    Chi, Miaofang
    SMALL METHODS, 2025, 9 (01):
  • [30] Compressive sensing and adaptive direct sampling in hyperspectral imaging
    Hahn, Juergen
    Debes, Christian
    Leigsnering, Michael
    Zoubir, Abdelhak M.
    DIGITAL SIGNAL PROCESSING, 2014, 26 : 113 - 126