Exploiting Biocatalysis in Peptide Self-Assembly

被引:82
|
作者
Williams, Richard J. [2 ]
Mart, Robert J. [3 ]
Ulijn, Rein V. [1 ]
机构
[1] Univ Strathclyde, Dept Pure & Appl Chem, WestCHEM, Glasgow G1 1XL, Lanark, Scotland
[2] CSIRO Mol & Hlth Technol, Clayton, Vic 3169, Australia
[3] Cardiff Univ, Sch Chem, Cardiff CF10 3AT, S Glam, Wales
关键词
enzyme; self-assembly; peptide; nanomaterials; hydrogels; biocatalysis; DYNAMIC COVALENT CHEMISTRY; PROCOLLAGEN C-PROTEINASE; SURFACTANT-LIKE PEPTIDES; SUPRAMOLECULAR HYDROGELS; ENZYMATIC FORMATION; SMALL MOLECULES; INTRACELLULAR HYDROGELATION; REVERSED HYDROLYSIS; BETA-SHEET; IN-VITRO;
D O I
10.1002/bip.21346
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This review article covers recent developments in the use of enzyme-catalyzed reactions to control molecular self-assembly (SA) an area that merges the advantages of biocatalysis with soft materials sefl-assembly. This approach is attractive because it combines biological (chemo-, regio-, and enantio-) selectivity with the versatility of bottom up nanofabrication through dynamic SA. We define enzyme-assisted SA (e-SA) as the production of molecular building blocks AM nonassembling precursors via enzymatic catalysis, where molecular building blocks form ordered structures via noncovalent interactions. The molecular design of SA precursors is discussed in terms of three key components related to (i) enzyme recognition, (ii) molecular switching mechanisms, and (iii) supramolecular interactions that underpin SA. This is followed by a discussion of a number of unique features of these systems, including spatiotemporal control of nucleation and structure growth, the possibility of controlling mechanical properties and the defect correcting and component selecting capabilities of systems that operate under thermodynamic control. Applications in biomedicine (biosensing, controlled release, matrices for wound healing, controling cell fate by gelation) and bio(nano)technology (biocatalysis immobilization nanofabrication templating, and intracellular imaging) are discussed. Overall, e-SA allows for unprecedented control over SA processes and provides a step forward toward production of nanostructures of higher complexity and with fewer defects as desired for next generation nanomaterials. (C) 2010 Wiley Periodicals, Inc.
引用
收藏
页码:107 / 117
页数:11
相关论文
共 50 条
  • [21] Self-Assembly of a Dentinogenic Peptide Hydrogel
    Nguyen, Peter K.
    Gao, William
    Patel, Saloni D.
    Siddiqui, Zain
    Weiner, Saul
    Shimizu, Emi
    Sarkar, Biplab
    Kumar, Vivek A.
    ACS OMEGA, 2018, 3 (06): : 5980 - 5987
  • [22] Effects of nanobubbles on peptide self-assembly
    Wang, Yujiao
    Shen, Zhiwei
    Guo, Zhen
    Hu, Jun
    Zhang, Yi
    NANOSCALE, 2018, 10 (42) : 20007 - 20012
  • [23] Polymorphismin peptide self-assembly visualized
    Tirrell, Matthew
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (06)
  • [24] Recent development of peptide self-assembly
    Xiubo Zhao
    Progress in Natural Science, 2008, (06) : 653 - 660
  • [25] Photolytic control of peptide self-assembly
    1600, American Chemical Society (125):
  • [26] Photolytic control of peptide self-assembly
    Bosques, CJ
    Imperiali, B
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (25) : 7530 - 7531
  • [27] Transient programmable peptide self-assembly
    Thordarson, Pall
    Wojciechowski, Jonathan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [28] The Two Faces of Peptide Self-Assembly
    Lee, MinJun
    Jo, Young-Beom
    Yoon, Jeseong
    Shin, Seokmin
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 360A - 361A
  • [29] Self-Assembly of Giant Peptide Nanobelts
    Cui, Honggeng
    Muraoka, Takahiro
    Cheetham, Andrew G.
    Stupp, Samuel I.
    NANO LETTERS, 2009, 9 (03) : 945 - 951
  • [30] Multiscale Modeling for Peptide Self-Assembly
    Zhao, Xiaochuan
    Liao, Chenyi
    Li, Jianing
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 304A - 304A