Perfect in-plane CrI3 spin-valve driven by photogalvanic effect

被引:28
|
作者
Luo, Yongzhi [1 ,2 ]
Xie, Yiqun [1 ]
Zhao, Juan [1 ]
Hu, Yibin [3 ]
Ye, Xiang [1 ]
Ke, Sanhuang [2 ]
机构
[1] Shanghai Normal Univ, Dept Phys, Shanghai 200234, Peoples R China
[2] Tongji Univ, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai 200083, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
TUNNELING MAGNETORESISTANCE; MAGNETIC STATES; 2D MATERIALS; SHIFT; FERROMAGNETISM; CRYSTAL;
D O I
10.1103/PhysRevMaterials.5.054004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Out-of-plane spin tunneling through the two-dimensional (2D) van der Waals CrI3 multilayer has recently been deeply explored, and giant magnetoresistance has been achieved in various CrI3 magnetic tunneling junctions (MTJs) via the control of interlayer antiferromagnetic coupling by both magnetic and electric fields. In contrast, knowledge of the in-plane spin-transport properties of 2D CrI3 is currently very limited. Here, based on quantum transport simulations, we study the in-plane transport properties of the photocurrent in a CrI3 MTJ with a bilayer/monolayer/bilayer configuration. The photogalvanic effect (PGE) is induced under vertical illumination of elliptically polarized light, giving rise to a robust photocurrent in a broad visible range at zero bias. A perfect spin-valve effect can be achieved with a magnetoresistance of 100% for some photon energies with an appropriate light helicity. Moreover, the PGE photocurrent for the antiparallel configuration is enhanced, as compared to the parallel configuration due to the increased device asymmetry. Our results show that a PGE-driven CrI3 photodetector is a promising candidate for low-power 2D spintronic devices.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Exchange interactions and spin dynamics in the layered honeycomb ferromagnet CrI3
    Bandyopadhyay, Subhadeep
    Buessen, Finn Lasse
    Das, Ritwik
    Utermohlen, Franz G.
    Trivedi, Nandini
    Paramekanti, Arun
    Dasgupta, Indra
    PHYSICAL REVIEW B, 2022, 105 (18)
  • [32] Spin-valve effect in a carbon atomic wire
    Wei, YH
    Xu, Y
    Wang, J
    Guo, H
    PHYSICAL REVIEW B, 2004, 70 (19)
  • [33] SPIN-VALVE EFFECT IN SOFT FERROMAGNETIC SANDWICHES
    DIENY, B
    SPERIOSU, VS
    GURNEY, BA
    PARKIN, SSP
    WILHOIT, DR
    ROCHE, KP
    METIN, S
    PETERSON, DT
    NADIMI, S
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1991, 93 : 101 - 104
  • [34] Spin-Valve Effect in Junctions with a Single Ferromagnet
    Yao, Fengrui
    Multian, Volodymyr
    Watanabe, Kenji
    Taniguchi, Takashi
    Gutierrez-Lezama, Ignacio
    Morpurgo, Alberto F.
    NANO LETTERS, 2025, 25 (09) : 3549 - 3555
  • [35] Distinct spin-lattice and spin-phonon interactions in monolayer magnetic CrI3
    Webster, Lucas
    Liang, Liangbo
    Yan, Jia-An
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (36) : 23546 - 23555
  • [36] Fundamental Spin Interactions Underlying the Magnetic Anisotropy in the Kitaev Ferromagnet CrI3
    Lee, Inhee
    Utermohlen, Franz G.
    Weber, Daniel
    Hwang, Kyusung
    Zhang, Chi
    van Tol, Johan
    Goldberger, Joshua E.
    Trivedi, Nandini
    Hammel, P. Chris
    PHYSICAL REVIEW LETTERS, 2020, 124 (01)
  • [37] Atomic Intercalation Induced Spin-Flip Transition in Bilayer CrI3
    Wu, Dongsi
    Zhao, Ying
    Yang, Yibin
    Huang, Le
    Xiao, Ye
    Chen, Shanshan
    Zhao, Yu
    NANOMATERIALS, 2022, 12 (09)
  • [38] Electron Spin Resonance Properties of CrI3 and CrCl3 Single Crystals
    Saiz, C. L.
    McGuire, M. A.
    Hennadige, S. R. J.
    van Tol, J.
    Singamaneni, S. R.
    MRS ADVANCES, 2019, 4 (40) : 2169 - 2175
  • [39] Electron Spin Resonance Properties of CrI3 and CrCl3 Single Crystals
    C. L. Saiz
    M. A. McGuire
    S. R. J. Hennadige
    J. van Tol
    S. R. Singamaneni
    MRS Advances, 2019, 4 : 2169 - 2175
  • [40] The enhanced effect of magnetism on the thermoelectric performance of a CrI3 monolayer
    Zhou, Zhe
    Li, Yan-Li
    Sun, Zhi-Gang
    Wang, Jia-Fu
    Chen, Ming-Yan
    Nanoscale, 2022, 15 (03) : 1032 - 1041